
Asymmetric Cross-Guided Attention Network for Actor and Action Video

Segmentation From Natural Language Query

Hao Wang1, Cheng Deng1,2∗, Junchi Yan3, Dacheng Tao4

1School of Electronic Engineering, Xidian University, Xi’an 710071, China
2Tencent AI Lab, Shenzhen, China

3Department of CSE, and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
4UBTECH Sydney AI Centre, School of Computer Science, FEIT, University of Sydney, Australia

{haowang.xidian, chdeng.xd}@gmail.com, yanjunchi@sjtu.edu.cn, dacheng.tao@sydney.edu.au

Abstract

Actor and action video segmentation from natural lan-

guage query aims to selectively segment the actor and its

action in a video based on an input textual description. Pre-

vious works mostly focus on learning simple correlation be-

tween two heterogeneous features of vision and language

via dynamic convolution or fully convolutional classifica-

tion. However, they ignore the linguistic variation of natu-

ral language query and have difficulty in modeling global

visual context, which leads to unsatisfactory segmentation

performance. To address these issues, we propose an asym-

metric cross-guided attention network for actor and action

video segmentation from natural language query. Specifi-

cally, we frame an asymmetric cross-guided attention net-

work, which consists of vision guided language attention to

reduce the linguistic variation of input query and language

guided vision attention to incorporate query-focused global

visual context simultaneously. Moreover, we adopt multi-

resolution fusion scheme and weighted loss for foreground

and background pixels to obtain further performance im-

provement. Extensive experiments on Actor-Action Dataset

Sentences and J-HMDB Sentences show that our proposed

approach notably outperforms state-of-the-art methods.

1. Introduction

With the explosive growth of video data in recent years,

video understanding has attracted ever-increasing attention

in computer vision community. However, traditional stud-

ies emphasize on video classification [23, 27, 29], action

recognition and localization [35, 36, 37, 38, 40]. Both of

them lack fine-grained analysis of video contents, such as

pixel-level joint understanding of actors and their actions,
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woman somersaulting
a man in dark is standing near the camera

Figure 1. Based on the input natural language query, actor and ac-

tion video segmentation aims at generating pixel-wise segmenta-

tion masks in a given video. The colored masks are corresponding

to the sentences with the same color on the top of the video.

which plays crucial role in human-robot interaction and au-

tonomous driving. Attempting to understand actors and

actions present in videos, Gavrilyuk et al. [6] introduced

a challenging task of actor and action video segmentation

from natural language query, as illustrated in Figure 1.

Recently, many approaches [7, 8, 16, 22, 39] have been

exploited for semantic segmentation or object localization

from natural language query. These approaches can be

roughly divided into two categories. In the first category,

dynamic convolution is utilized to adaptively segment or

localize an object, where the generated dynamic convolu-

tional filters vary with the input natural language query.

However, the linguistic variation of input textual description

would seriously impact sentence representation and subse-

quently make dynamic convolutional filters unstable, lead-

ing to inaccurate segmentation or localization. For example,

“car in blue is parked on the grass” and “blue car standing

on the grass” have the same meaning but different generated

filters, resulting in unsatisfactory performance. In the sec-

ond one, heterogeneous features from vision and language
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modalities are concatenated firstly and then utilized for seg-

mentation or localization via fully covolutional networks.

Unfortunately, they are incapable of modeling global visual

context, which is crucial for object segmentation or detec-

tion as verified in [21, 3]. Moreover, query-focused pixels

should be devoted more efforts for context modeling to pro-

mote the correlation between visual information and lan-

guage description. For example, to segment the “man on

the chair”, we need to take the pixels of the man on the

chair not grass or floor into consideration for aggregating

visual context.

In this paper, we propose a novel asymmetric cross-

guided attention network to deal with actor and action video

segmentation from natural language query. The network is

structurally asymmetric and consists of two parallel atten-

tion modules: vision guided language attention module and

language guided vision attention module. Specifically, to

address the linguistic variation of natural language query,

we devise a vision guided language attention module to ob-

tain more robust sentence representation, which reduces the

disturbance of noisy words and promotes the correlation be-

tween visual pixels and textual descriptions. Furthermore,

to incorporate global visual context for segmentation, we

elaborate a language guided vision attention module to ag-

gregate query-focused visual context, leading to better seg-

mentation performance. Additionally, we utilize the multi-

resolution fusion for various grained segmentation masks

and the weighted loss for foreground and background pix-

els to achieve extra performance improvement.

The main contributions of this work are as follows:

• We frame an asymmetric cross-guided attention net-

work, to simultaneously reduce the linguistic variation

and incorporate query-focused global visual context,

for more effective actor and action video segmentation;

• We devise a simple yet effective multi-resolution fu-

sion scheme in addition with a weighted loss for fore-

ground pixels, which can boost segmentation perfor-

mance with negligible computation cost;

• Experimental results on two popular video segmenta-

tion datasets demonstrate that our proposed approach

significantly outperforms state-of-the-art methods.

2. Related Work

2.1. Actor and Action Segmentation

For comprehensive action understanding, Xu et al. [31]

collected and annotated the Actor-Action Dataset (A2D)

with fixed actor and action pairs and introduced the chal-

lenging task of actor and action video segmentation. Ex-

isting methods can be mainly divided into two categories:

methods based on supervoxels features and those based on

deep features. In the first category, Xu et al. [31] proposed

a trilayer approach to model the interaction of separate ac-

tor and action nodes with actor-action product nodes. Xu

and Corso [30] proposed a grouping process to encourage

adaptive and long-ranging interactions of video parts. Yan

et al. [34] utilized robust multi-task ranking model to ad-

dress weakly-supervised actor and action segmentation. In

the second category, Kalogeiton et al. [10] jointly learned

the detectors of object and its action in a video by taking

advantage of deep features and then obtained segmentation

results via existing segmentation methods. Recently, Gavri-

lyuk et al. [6] extended A2D with human annotated sen-

tences and introduced the challenging task of actor and ac-

tion video segmentation from natural language query. They

adopted dynamic convolution, where the filters adaptively

varied with different input textual descriptions. However,

they not only ignored the linguistic variation of textual de-

scription but also solely tackled each pixel without consid-

ering the context information. Different from above works,

our proposed asymmetric cross-guided attention network

enables visual and linguistic features learn from each other,

leading to better segmentation performance.

2.2. Actor and Action Localization from a Sentence

According to the tasks they are focused on, existing

methods of actor and action localization from a sentence

can be categorized into two classes: actor localization from

a sentence and action localization from a sentence. In the

first class, Li et al. [15] introduced an interesting task of per-

son search with natural language description and proposed

a recurrent neural network with a gated neural attention

mechanism to calculate word-image affinity. Yamaguchi

et al. [33] extracted candidate tubes and conducted rele-

vance computation between text features and tube features

for spatio-temporal person retrieval. In the second class,

Gao et al. [5] proposed a multi-modal processing network

to generate alignment scores and location offsets for tem-

poral activity localization via language query. Hendricks et

al. [1] integrated local and global video features to localize

moments in video with natural language. Instead of gener-

ating bounding boxes around the human actor or perform-

ing action, we prefer a pixel-wise actor and action video

segmentation from natural language query for the further

understanding of video contents.

2.3. Attention Mechanism

To mimic how human vision works, attention mecha-

nism has been exploited in many fields such as natural lan-

guage processing [26], visual question answering [18], im-

age caption [32], and video classification [28]. These meth-

ods can be divided into two categories according to the net-

work architecture: self-attention based approaches and co-

attention based approaches. The self-attention mechanism
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Figure 2. Our proposed asymmetric cross-guided attention network, which consists of multi-modal feature encoder, asymmetric cross-

guided attention network and multi-resolution feature decoder. After extracting video and text features, the models learns most correlated

language features for visual pixels, e.g., “black dog walking” for the dog, and incorporates query-focused context, e.g., the pixels of the

exact described “dog”. Finally, we concatenate the weighted vision and language features for segmentation.

[26, 28] first transforms the features into query, key and

value features, and then calculates the self-attention matrix

between query and key features via inner product. After

normalization, final features are obtained through weighted

summation of original features on the basis of self-attention

matrix. Compared with the self-attention, the co-attention

mechanism explicitly computes the interactions across two

different modalities. Then features of each modality are ag-

gregated as weighted summation of original features based

on the co-attention matrix. Similarly, MRN [12] learns mul-

timodal joint representation in a residual way and AVDLN

[24] extends it with symmetric residual fusion and unidi-

rectional attention. Our model offers a novel asymmetric

cross-guided attention mechanism, which consists of vision

guided language attention (i.e., co-attention) to reduce lin-

guistic variation and language guided vision attention (i.e.,

gated self-attention) to aggregate query-focused global vi-

sual context.

3. Proposed Method

Given a video and a corresponding natural language

query, our method is to segment the actor and its action in

the video referred by the query. In this paper, we propose

a novel asymmetric cross-guided attention network, which

simultaneously reduces the linguistic variation of natural

language query and incorporates query-focused global vi-

sual context, achieving significant improvement on segmen-

tation performance. The architecture of our method is il-

lustrated as Figure 2, which consists of three components:

multi-modal feature encoder, asymmetric cross-guided at-

tention network, and multi-resolution feature decoder.

3.1. Multi­modal Feature Encoder

To extract multi-modal features for segmentation, we in-

troduce the text encoder and video encoder below.

We first obtain word vectors by using the word2vec

model pre-trained on the Google News Dataset [20] in-

stead of training word embedding model from scratch. It

can not only simplify the training procedure of natural lan-

guage model but also help to exploit similarity in descrip-

tions across different datasets. Then temporal information

of textual description is captured by a simple yet effective

1D convolutional neural network [13] atop word vectors in-

stead of long-short term memory network like in [7, 16].

Specifically, each word is encoded as a 300-dimensional

word vector and then the input sentence is composed by in-

dividual word representations. Subsequently, a single 1D

convolutional layer with non-linear activation is utilized

on input sentence matrix. We denote sentence matrix as

S ∈ R
NT×DT , where NT is the maximum length of words

in the dataset and DT is the feature dimension of word vec-

tor. Therefore, the text encoder can be formulated as

FT = EncT (S; θT ), (1)

where EncT is text encoder parameterized with θT and
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Figure 3. The proposed asymmetric cross-guided attention net-

work consists of vision guided language attention module imple-

mented with co-attention mechanism and language guided vision

attention module implemented with gated self-attention mecha-

nism. The “⊙” denotes element-wise multiplication while “⊗”

stands for inner production, respectively.

FT ∈ R
NT×DT is the extracted sentence representation.

To encode appearance information of actor and motion

information of its corresponding action simultaneously, we

adopt 3D convolution neural network to learn video repre-

sentation. Different from 2D convolution neural network,

Tran et al. [25] proposed C3D network and proved the ef-

fectiveness of 3D convolution and pooling in video process-

ing. To better exploit the spatio-temporal property of video,

Carreira and Zisserman [2] proposed Inflated 3D ConvNet

(I3D) and achieved state-of-the-art performance on human

action recognition. Here, the I3D model pre-trained on Im-

ageNet [4] and Kinetics [2] datasets is adopted for video

feature extraction. We feed a video clip into I3D model and

extract the intermediate output before maxpool3d 5a layer.

Then clip features are obtained by conducting temporal av-

erage pooling and followed L2 normalization on each pixel.

Given an input video V ∈ R
3×NV ×HV ×WV , the video en-

coder can be formulated as

FV = L2(Avg(EncV (V ; θV ))), (2)

where EncV stands for the partial of pre-trained I3D model

parameterized with θV , Avg and L2 stand for temporal av-

erage pooling and L2 normalization. NV , HV , and WV

denote the frame number, the height, and the width of in-

put frames, respectively. To identify some words like “bot-

tom” or “in the middle”, we concatenate spatial coordi-

nates features C ∈ R
HF×WF×DC with video clip features

FV ∈ R
HF×WF×DF along channel dimension. Here, HF ,

WF , DF , and DC denote the height, the width, the dimen-

sion of extracted video feature map, and the dimension of

spatial coordinates features, respectively.

3.2. Asymmetric Cross­guided Attention Network

After the feature extraction of video and natural language

query, heterogeneous features from two different modali-

ties are concatenated along channel dimension to perform

segmentation, as proposed in [7, 19]. However, they ig-

nore the linguistic variation of textual description and solely

tackle each pixel without considering the context informa-

tion. To address these issues, we elaborate a novel asym-

metric cross-guided attention network, consisting of vision

guided language attention module to reduce the linguistic

variation of input query and language guided vision atten-

tion module to aggregate query-focused global visual con-

text. The architecture of the asymmetric cross-guided atten-

tion network is illustrated in Figure 3.

The vision guided language attention module captures

pixel-wise interaction between vision and language modal-

ities and then utilizes the calculated co-attention matrix fol-

lowed by normalization to compute the weighted summa-

tion of original language features. The video features with

spatial information, denoted as FV C , are firstly aligned to

the features with same dimension as language features,

FV C→T = Linear(FV C), (3)

where FV C→T is the aligned features and Linear stands

for fully connected layer. By conducting co-attention, nor-

malization, and weighted summation, we can formulate the

process of vision guided language attention as

FTA = softmax

(

FV C→TF
⊤

T√
DT

)

FT . (4)

Then the weighted language features are concatenated with

visual features along channel dimension. It means that, for

each pixel of visual feature map, most related textual fea-

tures are learned, which significantly reduces the linguistic

variation and boosts the segmentation performance.

Recently, self-attention mechanism is proposed to cap-

ture long-ranging dependency and has achieved good re-

sults in natural language processing [26] and video classifi-

cation [28]. However, the native self-attention only utilizes

intra-modality information to estimate pixel-to-pixel impor-

tance, i.e., aggregating global context information. Inspired

by the idea that relations between different pixels should

be weighted differently according to input natural language

query, we design a language guided vision attention module

to incorporate query-focused global visual context. Firstly,

we conduct temporal max pooling and spatial tile over tex-

tual features to align them with the same dimension as vi-

sual features, which can be defined as

FT→V C = Linear(Repeat(Max(FT ))). (5)

Then video features with spatial information (i.e., FV C) are

transformed into query, key, and value features via single

fully connected layer,

FV CQ = Linear(FV C),

FV CK = Linear(FV C),

FV CV = Linear(FV C),

(6)
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where FV CQ, FV CK , and FV CV are query, key, and value

features, respectively. To introduce conditional information

of natural language description, we obtain dynamic query

features and dynamic key features by gating the original

query and key features with textual information,

F̃V CQ = FV CQ ⊙ FT→V C ,

F̃V CK = FV CK ⊙ FT→V C ,
(7)

where ⊙ is element-wise multiplication. Finally, the lan-

guage guided vision attention can be described as

FV A = softmax

(

F̃V CQF̃
⊤

V CK√
DV

)

FV CV . (8)

It can enhance the correlations among the pixels of the re-

gion related to the natural language query, leading to better

segmentation by incorporating query-focused global visual

context.

To simplify the description, we define asymmetric cross-

guided attention network as

FTA, FV A = Att(FV C , FT ; θAtt), (9)

where Att is the attention network parameterized with θAtt.

It is implemented with standard components in neural net-

works and thus can be integrated into other tasks seamlessly

like visual question answering and phrase referring.

3.3. Multi­resolution Feature Decoder

To obtain final segmentation results with the same res-

olution as the input video, we adopt multi-resolution (i.e.,

32 × 32, 128 × 128 and 512 × 512) feature decoders to

upsample the feature map in a progressive manner. We con-

catenate weighted language features FTA, weighted video

features FV A, and spatial features C along channel dimen-

sion, and then conduct segmentation through fully convo-

lutional networks. The medium and large resolution video

features are denoted as FM
V and FL

V , respectively. We for-

mulate them as

FM
V = Deconv(FV A),

FL
V = Deconv(FM

V ),
(10)

where Deconv stands for deconvolutional network, consist-

ing of one deconvolutional layer and one followed convolu-

tional layer.

The multi-resolution segmentation responses are ob-

tained as

RS = FCN([FV A, C, FTA]),

RM = FCN([FM
V , Interp(C), Interp(FTA)]),

RL = FCN([FL
V , Interp(C), Interp(FTA)]),

(11)

where RS , RM , and RL are small, medium, and large

resolution segmentation responses, respectively. Interp
denotes bilinear interpolation operation and FCN denotes

fully convolutional network. Furthermore, we elaborate a

multi-resolution fusion scheme to take advantage of vari-

ous grained segmentation responses and obtain the final re-

sponse as

RL = FCN([Interp(RS), Interp(RM ), RL]). (12)

In summary, the multi-resolution feature decoder can be

expressed as

RS , RM , RL = Dec(FV A, C, FTA; θD), (13)

where Dec represents the feature decoder parameterized

with θD. Unlike the static interpolation of segmentation re-

sponse, the trainable deconvolution on feature map would

make the model exploit more accurate segmentation results.

In addition, multi-resolution structure can not only utilize

various grained information for segmentation but also pro-

vide sufficient gradients for training the whole model better.

3.4. Training and Inference

Our proposed approach takes video clips V , natural

language queries S, and binary ground-truth segmenta-

tion masks Y as inputs and generates selective segmenta-

tion mask related to textual description.For each resolution

r ∈ {S,M,L}, the segmentation loss Lr between the re-

sponse Rr and the ground-truth Y r is calculated as

Lr =
1

HrW r

Hr

∑

i=1

W r

∑

j=1

ℓ(Rr
ij , Y

r
ij), (14)

where ℓ is weighted binary cross entropy, and Hr and W r

are the height and the width of ground-truth masks Y r, re-

spectively. Given coefficient P for foreground pixels, the

weighted loss can be formulated as

ℓ(Rr
ij , Y

r
ij) =− PY r

ij log(σ(R
r
ij))

− (1− Y r
ij) log(1− σ(Rr

ij)),
(15)

where σ is sigmoid function. The intermediate ground-

truths Y S and Y M are acquired through the bilinear inter-

polation of Y L. Finally, the loss of our proposed approach

can be formulated as

L = λ1LS + λ2LM + λ3LL, (16)

where λ1, λ2, and λ3 are weights for different resolutions.

During inference, we segment a pixel as foreground

when its response value is higher than 50% of the max value

in the response map. It should be noticed that we map the

final mask back to their original frame size for evaluation.
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Table 1. Segmentation results on A2D Sentences. The approaches marked by “*” are fine-tuned on the A2D Sentences. Our proposed

model significantly outperforms the state-of-the-arts even only takes multiple RGB frames as inputs.

Method
Overlap mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [7] 7.7 3.9 0.8 0.0 0.0 2.0 21.3 12.8

Li et al. [16] 10.8 6.2 2.0 0.3 0.0 3.3 24.8 14.4

Hu et al. [7] * 34.8 23.6 13.3 3.3 0.1 13.2 47.4 35.0

Li et al. [16] * 38.7 29.0 17.5 6.6 0.1 16.3 51.5 35.4

Gavrilyuk et al. [6] (RGB) 47.5 34.7 21.1 8.0 0.2 19.8 53.6 42.1

Gavrilyuk et al. [6] (RGB + Flow) 50.0 37.6 23.1 9.4 0.4 21.5 55.1 42.6

Ours (RGB) 55.7 45.9 31.9 16.0 2.0 27.4 60.1 49.0

Table 2. We evaluate the generalization ability on J-HMDB Sentences with the best model trained on A2D Sentences.

Method
Overlap mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Hu et al. [7] 63.3 35.0 8.5 0.2 0.0 17.8 54.6 52.8

Li et al. [16] 57.8 33.5 10.3 0.6 0.0 17.3 52.9 49.1

Gavrilyuk et al. [6] (RGB + Flow) 69.9 46.0 17.3 1.4 0.0 23.3 54.1 54.2

Ours (RGB) 75.6 56.4 28.7 3.4 0.0 28.9 57.6 58.4

Table 3. Segmentation results on A2D Sentences for ablation studies. Multi-resolution Fusion, Weighted Binary Cross Entropy with logits,

Attention model are abbreviated as “MRF”, “WBCE” and “ATT”, respectively.

Method
Overlap mAP IoU

P@0.5 P@0.6 P@0.7 P@0.8 P@0.9 0.5:0.95 Overall Mean

Gavrilyuk et al. [6] (RGB) 47.5 34.7 21.1 8.0 0.2 19.8 53.6 42.1

Gavrilyuk et al. [6] (RGB + Flow) 50.0 37.6 23.1 9.4 0.4 21.5 55.1 42.6

Baseline (RGB) 48.9 36.1 21.8 9.2 0.3 20.6 52.8 44.1

Baseline + MRF (RGB) 50.1 38.4 26.2 13.0 1.1 23.1 57.7 45.5

Baseline + MRF + WBCE (RGB) 53.5 43.4 29.7 13.7 1.4 25.5 57.4 47.5

Baseline + MRF + WBCE + ATT (RGB) 55.7 45.9 31.9 16.0 2.0 27.4 60.1 49.0

4. Experiment

4.1. Datasets and Evaluation Criteria

A2D Sentences is extended on the Actor-Action Dataset

(A2D) by Gavrilyuk et al. [6] via providing the textual de-

scriptions for each video. It contains 3,782 videos collected

from YouTube and includes 8 actions classes performed by

7 actors classes. There are 3 to 5 frames for each video with

dense pixel-level actor and action annotations for evaluating

segmentation performance. Besides, it contains 6,655 sen-

tences to describe actors and their actions presented in the

video. Following [6], we split the dataset into 3,017 training

videos, 737 testing videos and 28 unlabeled videos.

J-HMDB Sentences contains 928 videos and corre-

sponding 928 sentences, which is extended on the J-HMDB

dataset [9]. The annotations include 2D articulated human

puppet masks for dense segmentation labeling and natural

language queries for describing what action the object is

performing in each video.

We evaluate our proposed approach by using the crite-

ria of Intersection-over-Union (IoU) and precision. Specif-

ically, the overall IoU computes the ratio of the total inter-

section area divided by the total union area over all test-

ing samples, which obviously favor large actors and ob-

jects. The mean IoU calculates the average IoU of all test-

ing samples by treating samples of different size equally.

The precision@K reports the percentage of testing samples

whose IoU scores are higher than threshold K. We measure

precision at 5 different IoU thresholds and average precision

over 0.50:0.05:0.95 [17].

4.2. Implementation Details

According to [6], the multi-modal feature encoder adopts

pre-trained I3D model to extract video clip features and pre-

trained word2vector model to convert sentence into vector

matrix. The maximum length of words is set to 20 and its
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a girl is rolling on the ground

man in green shirt standing
man in yellow shirt jumping over a man

baby crawling in the corridor
the dog on the right is crawling
dog on the left crawling

Figure 4. Qualitative results on A2D Sentences. The first row shows the frames of input videos. The second row illustrates the segmentation

results from [6] and the third row are the segmentation outputs of our method. Both of them are trained on RGB frames for fair comparison.

The colored masks correspond to the sentences with the same color on the top of each video. Some overlaps are mixture of colors.

feature dimension is 300. We fine-tune the last inception

block before maxpool3d 5a layer of video encoder only on

A2D Sentences. The FCN in deconvolutional network con-

sists of three fully convolutional layers, where the kernel

size is 3×3 for the first two layers and 1×1 for the remain-

ing layer. For FCN in multi-resolution fusion, there are

only one fully convolutional layer with kernel size 3×3.

All experiments in this paper are implemented with Py-

Torch package. We use an Adam [14] optimizer with the

learning rate 5× 10−4. The batch size and maximum num-

ber of training epochs are 4 and 12, respectively. The learn-

ing rate is divided by 10 every 8 epochs. The loss weights

of λ1, λ2, and λ3 are fixed as 1 across all the experiments.

The coefficient of weighted binary cross entropy loss for

foreground pixels is set to 1.5. We only take the number of

16 RGB frames as video inputs for our proposed approach.

The frame annotated with ground-truth mask is in the mid-

dle of video clips.

4.3. Comparison with State­of­the­art Methods

We show results of actor and action video segmentation

from natural language query compared with one approach

[6] of the same task and two approaches [7, 16] of image

segmentation from a sentence in Table 1. There are two
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baby crawling dog

seagull standing middle

bowling staying right

Figure 5. Visualization on the attended region with the word as

input above each image.

training setting for prior works [7, 16] . In the first setting,

they are trained solely on ReferIt dataset [11] without any

fine-tuning on A2D sentences and their results are showed

in the first two rows. In the second setting, we fine-tune

the models on the training samples of A2D sentence and

mark the approaches with “*”. We observe that the same

approach fine-tuned on A2D Sentences significantly im-

proves the segmentation performance, which demonstrates

that dataset-specific video features play crucial role in

pixel-wise semantic segmentation. Our proposed approach

achieves remarkable improvement at higher IoU thresh-

olds, such as precision metrics “P@0.8” and “P@0.9”,

which demonstrates the advantages of our method com-

pared with existing state-of-the-art method [6]. Moreover,

we bring 5.0% absolute improvement on Overall IoU, 6.4%

in Mean IoU, and 5.9% in mAP over state-of-the-arts, re-

spectively. It should be noticed that our proposed approach

only takes RGB frames as video inputs without using any

additional information (i.e., optical flow computed from ad-

jacent frames as in [6]). Furthermore, qualitative results on

A2D Sentences are presented in Figure 4. We observe that

our method can produce more fine-grained and separated

masks than [6]. Specifically, our model can generate fine-

grained segmentation of actors or objects, e.g., hands of the

girl in the first video. The model can tackle the background

interference, e.g., “main in green” in the second video. Be-

sides, our model can generate better responses for spatial

qualifiers, e.g., in the third video. In Figure 5, we also pro-

vide the visualization of attention region for individual word

to understand the correlation between visual and linguistic

features. We find that the model can learn the correlations

between the nouns, verbs, spatial qualifiers and their corre-

sponding visual parts.

To further evaluate the generalization ability of our pro-

posed approach, we use the model pre-trained on A2D Sen-

tences to segment all samples in J-HMDB Sentences with-

out any additional fine-tuning. During evaluation, we uni-

formly sample 3 frames of each testing video as indicated

in [6]. The segmentation results are reported in Table 2. In

spite of obtaining obvious improvement on most metrics,

we still get poor precision performance at the threshold of

0.9. We guess the video encoder trained on A2D Sentences

can not produce features for accurate segmentation without

any fine-tuning on J-HMDB Sentences. More detailed anal-

yses will be included in supplementary material.

4.4. Ablation Studies

In order to verify the effectiveness of each component

in our proposed approach, we conduct ablation studies and

their results are illustrated in Table 3.

Baseline only replaces the dynamic convolution with

fully convolutional network to model the complex correla-

tions of concatenated heterogeneous features. When using

RGB frames as video inputs, it obviously beats the state-of-

the-art method [6] in most cases under different metrics.

Baseline+MRF improves segmentation performance by

a large margin through fusing multi-resolution segmenta-

tion responses. It reflects the great potential of fusing vari-

ous grained results for final segmentation.

Baseline+MRF+WBCE achieves similar performance

on Overall IoU but more higher performance on Mean IoU

contrast to Baseline+MRF, which means the weighted loss

is beneficial to segment out much more foreground pixels.

Baseline+MRF+WBCE+ATT obtains remarkable im-

provement on all metrics, which shows that the asymmetric

cross-guided attention network can significantly reduce lin-

guistic variation and incorporate query-focused global vi-

sual context.

5. Conclusion

In this paper, we have proposed an asymmetric cross-

guided attention network to handle the linguistic variation

of natural language query, which also incorporates query-

focused global visual context. Our approach achieves no-

table improvement on segmentation performance. It can

be seamlessly integrated into other tasks such as visual

question answering and phrase referring. In the future, we

should devote more efforts on the generalization ability of

segmentation model to have more in-depth understanding

of the underlying mechanism.
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