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Abstract— Video referring segmentation focuses on segmenting
out the object in a video based on the corresponding textual
description. Previous works have primarily tackled this task
by devising two crucial parts, an intra-modal module for con-
text modeling and an inter-modal module for heterogeneous
alignment. However, there are two essential drawbacks of this
approach: (1) it lacks joint learning of context modeling and het-
erogeneous alignment, leading to insufficient interactions among
input elements; (2) both modules require task-specific expert
knowledge to design, which severely limits the flexibility and
generality of prior methods. To address these problems, we here
propose a novel Object-Agnostic Transformer-based Network,
called OATNet, that simultaneously conducts intra-modal and
inter-modal learning for video referring segmentation, without
the aid of object detection or category-specific pixel labeling.
More specifically, we first directly feed the sequence of textual
tokens and visual tokens (pixels rather than detected object
bounding boxes) into a multi-modal encoder, where context and
alignment are simultaneously and effectively explored. We then
design a novel cascade segmentation network to decouple our
task into coarse-grained segmentation and fine-grained refine-
ment. Moreover, considering the difficulty of samples, a more
balanced metric is provided to better diagnose the performance
of the proposed method. Extensive experiments on two popular
datasets, A2D Sentences and J-HMDB Sentences, demonstrate
that our proposed approach noticeably outperforms state-of-the-
art methods.

Index Terms— Video referring segmentation, multi-modal
learning, video grounding.

I. INTRODUCTION

V IDEO has become one of the most popular forms of
media today due to its ability to simultaneously char-

acterize the static natural scene and the dynamic events it
contains. With the explosive growth of video data over recent
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Fig. 1. Given the textual description, video referring segmentation aims
to generate a pixel-wise segmentation mask of the video object. The input
sentence and colored mask share the same color if they are corresponding.

years, video understanding task has attracted ever-increasing
attention in the computer vision community [1], [2]. However,
traditional works tend to emphasize low-level vision under-
standing, such as video classification [3]–[7], action detection
and localization [8], [9], and video object segmentation [10],
[11], while failing to adequately interact with high-level
semantics, e.g., human natural language. To understand the
fine-grained actions performed by different actors in a video,
Xu et al. [10] annotated the Actor-Action Dataset (A2D) with
various actor-action pairs and introduced a challenging task
of actor and action video segmentation. This task requires a
comprehensive understanding of the static actors and dynamic
actions in the video.

In an attempt to explore the intricate interactions between
vision and language, Gavrilyuk et al. [12] augmented the video
object segmentation dataset with corresponding queries and
introduced the task of video referring segmentation, as illus-
trated in Figure 1. This task aims at selectively segmenting
out the object related to the input textual description, which is
extremely challenging, since it requires not only scene and lan-
guage understanding, but also high-level semantic alignment
among modalities. Moreover, video referring segmentation
requires the joint learning of intra-modal context modeling
and inter-modal alignment, which also does not rely on an
object detector.

Previous works [12]–[17] have been explored for video
referring segmentation. Following the paradigm of dynamic
convolution in prior work [14], they learned the correlation
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between video objects and textual sentences by generating
language-dependent convolutional filters for visual content.
Wang et al. [15] adopted asymmetric cross-guided attention
to aggregate visual context while Nin et al. [16] proposed a
position-aware self-attention for this purpose, where linguis-
tic information and the gating mechanism were taken into
consideration simultaneously. Moreover, context modulated
dynamic convolution [17] is proposed to incorporate spatial
context during the interaction process. However, a majority of
them [12]–[14], [17] simply utilize concatenation-convolution
or dynamic filter [18] to align heterogeneous features, which
neglects explicit intra-modal context modeling to help to
capture complex linguistic knowledge and global visual
relationships.

Recently, owning to the success of attention mecha-
nisms [19] in natural language processing, some works have
adopted gated self-attention to learn the intra-modal context on
the visual modality with textual description but making less
effort on language branch. We advocate that it requires joint
intra-modal and inter-modal learning for vision and language
tasks. For example, to segment the blue car is parking on
the left, the pixels of the blue car on the left-not another
color or location-should be focused on aggregating context
information. Similarly, two words that are far from each
other (e.g., blue and left) should be made a connection as
they point to the same visual entity. Moreover, prior works
adopt task-specific expert knowledge to devise intra-modal
and inter-modal modules, an approach that greatly limits the
flexibility and generality of their methods. For example, the
convolutional operation for visual modality is inappropriate for
social relationship data, meaning that necessary adaptation is
required for the original intra-modal or inter-modal modules.

Multi-modal transformers have attracted an even-increasing
attention in the context of vision and language tasks, e.g.,
visual question answering, visual grounding, and visual com-
monsense reasoning, as their powerful capability of long-range
context modeling. Lu et al. [20] proposed ViLBERT by first
applying transformers on texts and images independently to
learn intra-modal interactions, then concatenated them to feed
into another transformer to obtain inter-modal connections.
Li et al. [21] devised a simple yet performant VisualBERT via
utilizing a unified transformer for both vision and language.
Unfortunately, most of these approaches heavily rely on the
reliable object detector, which does not fit well with the
practical setting in which the object categories are in an open
set with new classes emerging.

In this paper, we propose a novel Object-Agnostic
Transformer-based Network, named OATNet, for video refer-
ring segmentation without the object detection aids such as
existing multi-modal transformers. It primarily comprises a
multi-modal encoder and cascade segmentation network. More
specifically, after extracting the features of the textual and
visual tokens, the concatenation of them is fed into the
multi-modal encoder to capture the intra-modal and inter-
modal interactions, e.g., each element in the sequence can
attend to the others of the same modality and different one.
Then a cascade segmentation network is devised to decouple
our task into coarse-grained segmentation and fine-grained

refinement. Moreover, we propose a more balanced metric to
analyze the experimental results by considering the difficulty
of samples.

The main contributions of this work can be summarized as
follows:

1) We propose an object-agnostic transformer-based net-
work, in which the intra-modal and inter-modal interactions
are simultaneously and effectively explored. Notably, while
previous transformers used in image referring segmentation
are based on object detection, ours operates directly on video
pixels. Moreover, our method can easily be scaled to other
modalities provided that they are processed as tokens.

2) We devise a novel cascade segmentation network of the
multi-modal encoder, to decouple our task into coarse-grained
segmentation and fine-grained refinement, which remarkably
reduces the computational cost while maintaining acceptable
performance.

3) Based on the difficulty of the samples, we present a
novel metric for experimental results to help us analyze the
performance from a more balanced perspective.

4) Experimental results on two popular video segmentation
datasets demonstrate that our proposed approach significantly
outperforms state-of-the-art methods.

II. RELATED WORK

A. Actor and Action Video Segmentation

To understand the fine-grained actions performed by dif-
ferent actors in the video, Xu et al. [10] annotated the
Actor-Action Dataset (A2D) with various actor-action pairs
and introduced a challenging task of actor and action video
segmentation. This task requires a comprehensive understand-
ing of the static actors and dynamic actions in the video. Early
works [10], [22] mainly adopted a graphical model to group
the spatio-temporal information based on the supervoxel fea-
tures. For example, Xu et al. [10] utilized separate classifiers
for the actor, action and joint actor-action nodes to model the
relationships among these nodes in the graph. An Interaction-
Integrated Network [23], which contains a few Interaction-
Integrated Cells, is designed to localize video clips according
to a natural language description. Xu and Corso [22] adopted
a grouping processing model to adaptively capture long-range
interactions between video parts. Furthermore, Yan et al. [24]
extended the task into the weakly supervised setting and
proposed a robust multi-task ranking model to address it.
Recently, deep learning has been successfully applied in many
fields due to its powerful capability of feature extraction.
Kalogeiton et al. [8] began to jointly learn the actor and
its action detectors on top of the deep features of RGB and
optical flow inputs, then segmentation on detected results was
performed with existing methods. An efficient quantization
parameter cascading technique [25] was also proposed for
surveillance video coding. However, all these works above
focus on low-level vision understanding, lacking interaction
with high-level natural languages.

A Gaussian process embedded channel attention (GPCA)
module [26] is proposed to model the correlations among
the channels, which are assumed to be captured by beta
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distributed variables. Flow Edge-based Motion-Attentive Net-
work (FEM-Net) [27] is designed to hallucinate edges of the
ambiguous or missing region in the optical flow for the
unsupervised video object segmentation problem. During
the segmentation stage, the complementary temporal feature
composed by the motion-attentive feature and flow edge is
fed into a decoder to infer the salient foreground objects.
In order to capture the temporal dependencies and gather
information from multiple frames through bilateral temporal
re-aggregation, Lin et al. [28] explored three schemes to build
the aggregation, which can transfer the knowledge from a
semi-supervised model to the weakly-supervised model with-
out increasing the inference latency.

B. Video Referring Segmentation

To study the interaction between vision and language,
Gavrilyuk et al. [12] collected corresponding sentences to
describe the actor and its action in the video, and accord-
ingly introduced the task of video referring segmentation.
To overcome the limitations of traditional dynamic convolu-
tion, Wang et al. [17] proposed context modulated dynamic
convolution to incorporate spatial context during the process
of interaction. However, they neglected explicit intra-modal
learning to capture complex linguistic knowledge and global
visual relationship. Hence, inspired by the attention mecha-
nism [19] in natural language processing, Yang et al. [29]
adopted a two-stage paradigm to match the query and detected
object bounding boxes. Different from the above works, our
proposed approach takes advantage of a multi-modal trans-
former encoder to jointly capture intra-modal and inter-modal
interactions, without using any object detection technique.

C. Multi-Modal Transformers

Based on the appealing performance of BERT [30], vision
and language pre-training has become a nascent research
area in computer vision community. Deng et al. [31] utilized
a transformer to establish the multi-modal correspondence
for visual-linguistic context interaction. Li and Sigal [32]
proposed Referring Transformer to regress the bounding box
and produce a segmentation mask simultaneously, which
achieves superior performance. For video-language modalities,
Sun et al. [33] proposed VideoBERT to extend the visual
format to video data, which can be fine-tuned for downstream
tasks, such as action classification and video captioning.
Chen et al. [34] introduced UNITER mainly from the aspect
of optimizing pre-training tasks, i.e., a conditional masking
mechanism on masked language or masked region modeling.
Toward learning more fine-grained cross-modal alignment,
Huang et al. [35] proposed Pixel-BERT by changing the visual
input from region-based image features to randomly selected
(i.e., incomplete) pixel-level ones. By contrast, our proposed
approach does not depend on object detection, which is end-
to-end for training and evaluation. Moreover, it explores a
complete (e.g., 1,024 v.s. 100) sequence of pixels and utilizes
a novel cascade segmentation network to effectively address
video referring segmentation. However, previous transform-
ers used in vision and language tasks are based on object

detection while ours operates on video pixels directly, which
is non-trivial and needs more efforts to achieve the joint
learning. Besides, the interactions, including intra-modal and
inter-modal ones, among input elements become more fully
explored when the number of stacked encoders increasing.

Our method simultaneously and effectively explores the
joint intra-modal and inter-modal interactions, without the
requirement of object detection like in UNITER [34] and
other multi-modal transformers [36], [37], which can operate
on video pixels directly and is naturally suitable for realistic
scenarios. After extracting the features of the textual and visual
tokens, the concatenation of them is fed into the multimodal
encoder to capture the intra-modal and inter-modal interac-
tions. In this way, each element in the sequence can attend to
the others of the same modality and different one. Note that
applying transformer-based methods to our task without the
aid of object detection or category-specific pixel labeling is
more challenging than most vision and language tasks.

III. METHODOLOGY

Given an input video V = {vi }T
i=1 with T frames and

a corresponding natural language query Q = {qi}N
i=1 with

N words, our approach is to segment out the object in the
video described by the input textual query. The architecture
of our method is illustrated in Figure 2, which consists of a
multi-modal feature extractor, a multi-modal encoder and a
cascade segmentation network.

A. Multi-Modal Feature Extractor

To effectively encode the static appearance and dynamic
motion information of video data, we adopt a 3D convolution
network to simultaneously capture video representations. With
the emergence of many researches [4], [38], [39], the 3D
convolution has been widely explored. Following previous
works [12], [15], we utilize the Inflated 3D ConvNet (I3D) pre-
trained on the Kinetics dataset [4] as a visual backbone, which
is based on 2D ConvNet inflation: filters and pooling kernels of
very deep image classification ConvNets are expanded into 3D,
making it possible to learn seamless spatio-temporal feature
extractors from video while leveraging successful ImageNet
architecture designs and even their parameters. Specifically,
given a video clip V ∈ R

3×T ×H×W , we obtain multi-scale
outputs for subsequent multi-modal encoding and cascade
segmentation, and formulate this procedure as follows:

VS, VM , VL = EncV (V ; θV ), (1)

where T , H and W represent the number of frames, the
height and the width of each frame, respectively. Moreover,
EncV denotes the video feature extractor parameterized with
θV , while VS , VM and VL are denoted as the outputs of
small, medium and large scale. It is worth noting that the
high-level but coarse-grained VS is utilized for multi-modal
interaction with textual features, which would introduce a far
lower (i.e., 1

256 ) computational cost when compared to directly
adopting VL .

Recently, a collaborative spatial-temporal encoder-decoder
framework [12] was proposed that contains a 3D temporal
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Fig. 2. The architecture of our proposed OATNet, which consists of multi-modal feature extractor, multi-modal encoder and cascade segmentation network.
We first extract VS (i.e., coarse-grained visual embedding), VM , VL (i.e., fine-grained visual embedding) and textual embedding (i.e., one-hot embedding)
via multi-modal feature extractor. We then concatenate VS and textual embedding to feed them into the multi-modal encoder to simultaneously capture the
intra-modal and inter-modal interactions. Finally, we obtain the segmentation masks MaskS by SegS and MaskL through PU (i.e., progressive upsampling)
and SegL .

encoder over the video clip that is propoed to recognize the
queried actions, while a 2D spatial encoder over the target
frame is utilized to accurately segment the queried actors.
Following [12], we fix the input size as 512 × 512. We then
select the temporally averaged outputs of I3D at the second,
third and fourth stage as follows:

VS ∈ R
832×32×32,

VM ∈ R
480×64×64,

VL ∈ R
192×128×128. (2)

To extract the word-level features in each sentence, we adopt
a one-hot embedding method like that used in BERT rather
than utilizing the vectors from the pre-trained word2vec
model. More specifically, we tokenize the sentence into word-
pieces [40], which consist of a deep LSTM network with eight
encoder and eight decoder layers using residual connections
as well as attention connections from the decoder network to
the encoder, after which they employ an embedding matrix to
embed each token into a vector. Formally, we can formulate
the process as follows:

Q̂ = EncQ(Q; θQ), (3)

where EncQ denotes the textual embedder parameterized with
θQ , i.e., the learnable embedding matrix.

B. Multi-Modal Encoder

Before introducing the multi-modal encoder, we first revisit
the architecture of the standard transformer [19] in natural
language processing. The key operation of the transformer
is self-attention, which is originally designed to capture the

long-range relations of word tokens in each sentence. Con-
cretely, given the input sequence X ∈ R

N×D , where N is the
length of the sequence and D indicates its feature dimension.
We first project input X into query X Q , key X K and value
XV by three matrices WQ ∈ R

D×D, WK ∈ R
D×D and

WV ∈ R
D×D , respectively. The projection can be written as

follows:
X Q = XWQ ,

X K = XWK ,

XV = XWV . (4)

The attention output Xatt is then calculated as follows:

Xatt = Softmax(
X Q X�

K√
D

+ X M )XV , (5)

where X M ∈ R
N×N is the self-attention mask, defined as:

(X M )i, j =
{

0, (X Q)i can attend to (X K ) j ,

−∞, (X Q)i cannot attend to (X K ) j .
(6)

It is used to ignore the attention score calculated between the
textual or visual token and the useless padding token.

We next adopt the transformer discribed above to process
multiple modalities in our task. Specifically, we flatten the
video features VS as visual tokens and concatenate the textual
ones Q̂ to feed them into the multi-modal transformer encoder,
along with the positional encoding and type embedding as in
BERT. This input sequence X can be defined as follows:

{[CLS], qin
0 , · · · , qin

N , [SEP], v in
0 , · · · , v in

1023},
qin

i = LayerNorm(q̂i + pq
i + tq ),

v in
i = LayerNorm((vs)i + pv

i + tv ), (7)

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 18,2023 at 12:11:52 UTC from IEEE Xplore.  Restrictions apply. 



YANG et al.: OBJECT-AGNOSTIC TRANSFORMERS FOR VIDEO REFERRING SEGMENTATION 2843

Fig. 3. The illustration of cascade segmentation network, which consists of a coarse-grained segmentation for heterogeneous interaction and a fine-grained
refinement to capture more visual details. We first conduct the segmentation on high-level but coarse-grained V out

S , which already learns interaction with
corresponding language queries. Then, the progressive upsampling first upsamples the V̂S to the same size of VM , then the concatenation of V̂S and VM are
fed into multi-scale dilated convolution (MSDC) to conduct fusion. Finally, V̂L is obtained with multi-modal interaction information and rich visual details
for subsequent segmentation.

where [CLS] and [SEP] are special tokens for global
cross-modal matching (not used in our task) and modality
separation, respectively. pq

i and pv
i denote the positional

embedding of textual and visual tokens. The former is the
embedding indexed by the word order in a sentence, while
the latter is the spatial location of each pixel, e.g., normalized
coordinate (x, y) on a 2D feature map. Besides, tq and tv

are type embeddings that explicitly indicate the modality
category. Through stacking multiple encoders, intra-modal
and inter-modal interactions are sufficiently explored. Finally,
we obtain the output and formulate it as follows:

{[CLS], qout
0 , · · · , qout

N , [SEP], vout
0 , · · · , vout

1023}. (8)

Since our task focuses on segmentation, we simply extract
the visual part of the output and reshape it to the grid
feature map. To simplify the description, we can define the
multi-modal encoder as follows:

V out
S = MME(VS, Q̂; θM M E ), (9)

where MME denotes the multi-modal encoder parameterized
with θM M E .

C. Cascade Segmentation Network

It is well known that the computation cost of self-attention
scales with O(N2), which means that VL is not appropriate
for multi-modal interaction with a textual query. However,
VL contains much visual details to significantly contribute the
segmentation. Hence, we propose a novel cascade segmenta-
tion network, as illustrated in Figure 3, to decouple our task
into coarse-grained segmentation and fine-grained refinement.
Concretely, we first conduct segmentation on high-level but
coarse-grained V out

S , which already learns interaction with

corresponding language queries. The segmentation mask MS

can be formulated as follows:
MS = σ(SegS(V out

S )), (10)

where SegS and σ denote the segmentation network and
Sigmoid activation, respectively. To utilize visual details for
better segmentation, we incorporate them via progressive
upsampling and describe it as follows:

V̂S = [VS, V out
S ],

V̂L = PU(V̂S, VM , VL),

ML = σ(SegL(V̂L)), (11)

where SegL and PU(·) represent the refinement network and
progressive upsampling, respectively. Specifically, the progres-
sive upsampling first upsamples the V̂S to be the same size of
VM , after which the concatenation of V̂S and VM are fed into
multi-scale dilated convolution (MSDC) to conduct fusion.
Finally, V̂L is obtained with multi-modal interaction informa-
tion and rich visual details for subsequent segmentation.

For simplicity, we summarize the cascade segmentation
network as follows:

MS , ML = CSN(V out
S , VS, VM , VL ; θC S N), (12)

where CSN stands for the cascade segmentation network
parameterized with θC S N .

D. Training and Inference

Given an input video clip V , corresponding natural language
query Q and multi-scale ground-truth segmentation masks
YS and YL , our proposed method generates the multi-scale
predictions MS and ML . Therefore, we can formulate the
overall loss as follows:

L = LS + LL . (13)
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Specifically, each term outlined above is calculated as follows:
Lr = −Yr log(σ (Mr )) − (1 − Yr )log(1 − σ(Mr )), (14)

where r ∈ {S, L}, while σ denotes Sigmoid activation. During
inference, we take a pixel as foreground when its prediction
value exceeds half of the maximum value in the entire response
map.

IV. EXPERIMENT

In this section, we first provide the dataset statistics and
implementation details used in all experiments. Next, we com-
pare our proposed approach with existing state-of-the-art meth-
ods to demonstrate the superiority of our method. Finally,
we present quantitative analysis of the proposed model and
visualization of experimental results.

A. Dataset Statistics

A2D Sentences [12]: is annotated and released by augment-
ing the original video dataset [10] with 6,655 natural language
descriptions, for video referring segmentation. Statistically,
there are 3,782 videos collected from YouTube, which includes
8 action classes and 7 actor classes. Specifically, the actions
comprise climbing, crawling, eating, flying, jumping, rolling,
running and walking. The actors include adult, baby, ball,
bird, car, cat and dog. In each video, three to five frames
are labeled with pixel-level masks for training and evaluation.
Following [12], the dataset is divided into 3,017 training
videos, 737 testing videos and 28 unlabeled videos.

J-HMDB Sentences: is also annotated through augmenting
original dataset [41] with 928 natural language descriptions.
The pixel-level ground-truth is a 2D articulated human puppet
mask. It is worth noting that each sample of J-HMDB Sen-
tences contains only one salient visual object, which means
it is relatively easier to be segmented than the one of A2D
Sentences.

Following prior work [12], [15], we adopt the popular crite-
ria of Intersection-over-Union (IoU) and precision to evaluate
the segmentation performance. In more detail, we utilize two
kinds of IoU: mean IoU and overall IoU. The former first
computes the IoU of each sample and then averages the results
on the whole dataset. The latter is obtained by calculating
the ratio of the total intersection area divided by the total
union area on the entire dataset. Besides, the P@t computes
the percentage of the testing samples (i.e., sentence-clip pairs)
whose IoU scores are higher than threshold t , while the mean
average precision (mAP) reports the averaged results over
various thresholds from 0.5 to 0.95 with step 0.05.

Moreover, as illustrated in Figure 4, we observe that there
exists easy examples in both datasets. The easy sample only
contains one salient visual object while the hard sample
contains more than one object. Till now, only A2D Sentences
and J-HMDB Sentences have been publicly used for video
referring segmentation. We advocate that extra metrics are
required to better diagnosed the model performance, based on
the sample difficulty. Hence, we propose the harmonic mean
H@t metric to calculate the more balanced results of precision:

H@t = 2 ∗ (P@t)easy ∗ (P@t)hard
(P@t)easy + (P@t)hard

, (15)

which indicates that our goal is high precision value on both
easy and hard samples.

B. Comparison Methods

We demonstrate the results of video referring segmentation
compared with five approachs [12], [15]–[17], [29] that have
adopted the same task.

1) Gavrilyuk et al. [12] collected corresponding sentences
to describe the actor and its action in the video, and
introduced the video referring segmentation task.

2) Wang et al. [15] adopted asymmetric cross-guided atten-
tion to aggregate visual context.

3) Nin et al. [16] proposed a position-aware self-attention
to aggregate visual context, where linguistic information
was simultaneously taken into consideration with the
gating mechanism.

4) Wang et al. [17] proposed context modulated dynamic
convolution to incorporate spatial context during the
interaction process.

5) Yang et al. [29] adopted a two-stage paradigm to match
the query and detect object bounding boxes.

C. Implementation Details

For multi-modal feature extractors, we adopt the I3D model,
pre-trained on the Kinetics dataset, to extract video features
by following [12] and vocabulary embedding matrix of pre-
trained BERT [30] to obtain textual features. Concretely, VS ,
VM and VL are temporally averaged outputs of I3D at the
second, third and fourth stage, respectively. For the multi-
modal encoder, we utilize the first 3 layers of the pre-trained
12-Layer BERT model to prevent the over-fitting on our
datasets. For cascade segmentation network, we employ sin-
gle fully convolutional layer for coarse-grained segmentation
network and two fully convolutional layers (the hidden size
is 128) for fine-grained refinement network. The approaches
marked by †, � and ∗ fine-tune the layer mixed_4f, the layers
from mixed_4b to mixed_4f and all layers of I3D, respectively.

We utilize PyTorch [42] package for all experiments in this
paper. For optimizer, we adopt AdamW [43] with the learning
rate 0.0005 and weight decay 0.01. The batch size is 10 and
total training step is 20,000. We divide the learning rate by
10 after 14,000 steps. For input clip, the number of frames is
8 and the height or width are 512, respectively. The annotated
frame are fixed in the middle of sampled clip. We only take
RGB frames as input, instead of using RGB and optical flow
clips like prior work [12].

D. Comparison With State-of-the-Art Methods

We demonstrate the results of video referring segmentation
compared with several state-of-the-art methods in Table I.
Previous works [13], [14] have two settings: methods are
trained only on ReferIt dataset [44] without any fine-tuning
on A2D Sentences and fine-tuning the models on the training
samples of the target dataset. The methods of the former
setting are shown in the first two rows, and the methods of the
latter setting are marked with †. Obviously, the more layers
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TABLE I

SEGMENTATION RESULTS ON A2D SENTENCES. THE APPROACHES MARKED BY †, � AND ∗ FINE-TUNE THE LAYER mixed_4f , THE LAYERS FROM
mixed_4b TO mixed_4f AND ALL LAYERS OF I3D ON A2D SENTENCES, RESPECTIVELY. THE METHOD MARKED BY ◦ ADOPTS TWO-STAGE

PARADIGM. IT SHOULD BE NOTED THAT THE RESULTS OF [12] ARE OBTAINED ON TWO STREAMS - RGB AND OPTICAL FLOW WHILE

THE OTHERS ONLY TAKE RGB FRAMES AS INPUT

TABLE II

THE GENERALIZATION ABILITY OF EACH METHOD ON J-HMDB SENTENCES WITH THE MODEL TRAINED ON A2D SENTENCES. THE METHODS

MARKED BY †, � AND ∗ FINE-TUNE THE LAYER mixed_4f , THE LAYERS FROM mixed_4b TO mixed_4f AND ALL LAYERS OF I3D ON A2D
SENTENCES, RESPECTIVELY. THE METHOD MARKED BY ◦ ADOPTS TWO-STAGE PARADIGM

Fig. 4. The proportion of easy samples and hard ones on A2D Sentences
and JHMDB Sentences respectively.

fine-tuned, the better segmentation performance. For our pro-
posed approach, we observe that fine-tuning on the same stage
(mixed_4f or from mixed_4b to mixed_4f) obtains similar
performance, which demonstrates that low-level video features

(i.e., mixed_3b, mixed_3c and etc) play more crucial role
in pixel-wise semantic segmentation. Our proposed approach
achieves remarkable improvement at higher IoU thresholds,
such as precision metrics ‘P@0.8’ and ‘P@0.9’, which reflects
the advantages of our method compared with existing state-of-
the-art approaches [12], [15]–[17]. Moreover, we bring 6.1%
absolute improvement in Mean IoU, 1.3% in Overall IoU, and
5.1% in mAP over state-of-the-arts, respectively. Our approach
only takes RGB frames as video inputs, without using any
additional motion information (i.e., optical flow as in [12]).
Although the visual backbone (i.e., I3D v.s. Faster R-CNN) is
different from the two-stage work [29], our approach beats it
on all metrics, showing the effectiveness and potential of the
proposed method.

To evaluate the generalization ability of our proposed
approach, we adopt the model pre-trained on A2D Sentences
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Fig. 5. Qualitative results on A2D Sentences. The first and second rows show the input textual descriptions and the frames of input videos. The third
row illustrates the segmentation results from Baseline. The fourth row and the fifth row are the segmentation outputs of Baseline + MME (scratch) and
Baseline + MME (pre-trained), respectively. The last two rows are the results of pre-trained MME with CSN, where the top row is our model without VL
and the bottom is our full model. Both of them are trained on RGB frames for a fair comparison. The colored masks correspond to the sentences with the
same color on the top of each video. Some overlaps are a mixture of colors.

to segment all samples on J-HMDB Sentences without any
additional fine-tuning. During the evaluation, we uniformly
sample 3 frames of each testing video as indicated in [12].
The segmentation results are reported in Table II. Our method
obtains obvious improvement on most metrics, including the
hardest on ‘P@0.9’. Besides, the more layers fine-tuned on
A2D Sentences, the better segmentation performance can be
achieved.

In addition, we observe that the segmentation results of
Ning et al. [16] on Overall IoU and P@t are high but

low on Mean IoU. We suspect that their method prefers
segmenting well on easy samples. Hence, for the first time,
we present an extra analysis to determine the performance
improvement whether from easy samples (i.e., only having
one salient object in the video) or hard ones, as illustrated in
Table III, where Easy and Hard represent the P@t of Easy and
Hard samples compared with all testing samples. Moreover,
we adopt a harmonic mean to compute the more balanced
results of precision, which reveals the ‘real’ performance of the
method.
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Fig. 6. Qualitative results on A2D Sentences. Our method can also achieve competitive results when there are moving small objects or occlusions.

TABLE III

THE TESTING SAMPLES ARE DIVIDED INTO EASY SAMPLES AND HARD

ONES. H@T REPRESENTS THE HARMONIC MEAN VALUE OF THEM

We have tested the inference performance of our approach,
which achieves 29.46 FPS via adopting the technique of mixed
precision. Concretely, the model takes the raw sequence of
video frames and sentences as input and outputs the segmen-
tation result with the same size as the input frame.

E. Ablation Studies
To further verify the effectiveness of each component,

we conduct ablation studies and show the results in Table IV.

Baseline: first utilizes I3D and GRU [45] to extract features
and then follows the traditional way of concatenation-
convolution to obtain the final segmentation result.

Baseline + MME: adopts a multi-modal encoder to
extract linguistic features as well as perform a hetero-
geneous alignment. We can observe that merely replac-
ing GRU with MME (scratch), i.e., multi-modal encoder
without pre-training, significantly improves the performance.
Besides, further improvement can be observed when employ-
ing MME (pre-trained), i.e., the encoder pre-trained on a
text corpus. Here, the proposed multi-modal encoder obtains
excellent performance on our task and is more flexible than
prior methods since it only requires tokenizing the input of
various modalities, e.g., natural language queries and pixels
of the visual feature map.

Furthermore, our full model, i.e., Baseline + MME (pre-
trained) + CSN, achieves state-of-the-art performance on
both datasets. It is worth noting that with the addition of
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TABLE IV

SEGMENTATION RESULTS ON A2D SENTENCES FOR ABLATION STUDIES. HERE, MME AND CSN DENOTE MULTI-MODAL ENCODER AND
CASCADE SEGMENTATION NETWORK, RESPECTIVELY. THE PRE-TRAINED OR SCRATCH

INDICATES WHETHER THE BERT IS TRAINED OR NOT ON TEXT CORPUS

multi-scale features, the model performance steadily improves.
It also demonstrates that modeling visual details greatly
improves segmentation performance.

Qualitative results on A2D Sentences are presented in
Figure 5, where the first and second rows show the input
textual descriptions and the frames of input videos. The
fourth row and the fifth row are the segmentation outputs of
Baseline + MME (scratch) and Baseline + MME (pre-
trained), respectively. The last two rows are the results of
pre-trained MME with CSN, where the top row is Baseline
+ MME (pre-trained) + CSN w/o VL and the bottom is
our full model. Both of them are trained on RGB frames
for a fair comparison. The colored masks correspond to the
sentences with the same color on the top of each video. Some
overlaps are a mixture of colors. Concretely, the Baseline
performs fairly on the simple sample with one actor, however,
when there are multiple actors, the Baseline cannot even
locate the correct target. The model’s ability to locate the
correct actors is significantly enhanced with Baseline + MME
(pre-trained), which is also an important reason for the signif-
icant improvement in our performance. Meanwhile, the results
have demonstrated the multi-modal encoder can effectively
capture the intra-modal interactions for contextual feature
learning and inter-modal ones for heterogeneous alignment.

More importantly, we can see that our model can generate
fine-grained segmentation of actors or objects after the cascade
segmentation network, i.e., legs and arms of the actor in
Figure 5, which shows that the proposed network can effec-
tively conduct coarse-grained segmentation and fine-grained
refinement, especially for the scene with three actors. Finally,
we also select some complex scenes to evaluate the proposed
method and the results shown in Figure 6. For the small
moving car and occluded targets, traditional methods cannot
locate the targets accurately, but our method can still achieve
satisfactory results.

V. CONCLUSION

In this paper, we have proposed a novel object-agnostic
transformer-based network, OATNet, to address the emerg-
ing task of video referring segmentation. Our approach
simultaneously handles the intra-modal context modeling and
inter-modal heterogeneous alignment. As a result, it sig-
nificantly improves segmentation performance with the less
expert knowledge required to design for better flexibility and
generality. Moreover, our method can be easily scaled to

other modalities as long as they are processed as tokens.
To reduce the computation cost while maintaining accept-
able performance, we present a novel cascade segmentation
network atop the multi-modal encoder to decouple our task
into coarse-grained segmentation and fine-grained refinement.
We evaluate our proposed approach on two popular video
segmentation datasets, and the results demonstrate that it
significantly outperforms state-of-the-art methods.
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