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Transferable Coupled Network for Zero-Shot
Sketch-Based Image Retrieval
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Abstract—Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) aims at searching corresponding natural images with the given free-
hand sketches, under the more realistic and challenging scenario of Zero-Shot Learning (ZSL). Prior works concentrate much on
aligning the sketch and image feature representations while ignoring the explicit learning of heterogeneous feature extractors to make
themselves capable of aligning multi-modal features, with the expense of deteriorating the transferability from seen categories to
unseen ones. To address this issue, we propose a novel Transferable Coupled Network (TCN) to effectively improve network
transferability, with the constraint of soft weight-sharing among heterogeneous convolutional layers to capture similar geometric
patterns, e.g., contours of sketches and images. Based on this, we further introduce and validate a general criterion to deal with multi-
modal zero-shot learning, i.e., utilizing coupled modules for mining modality-common knowledge while independent modules for
learning modality-specific information. Moreover, we elaborate a simple but effective semantic metric to integrate local metric learning
and global semantic constraint into a unified formula to significantly boost the performance. Extensive experiments on three popular
large-scale datasets show that our proposed approach outperforms state-of-the-art methods to a remarkable extent: by more than 12%
on Sketchy, 2% on TU-Berlin and 6% on QuickDraw datasets in terms of retrieval accuracy. The project page is available at: https://

haowang1992.github.io/publication/TCN.

Index Terms—Transferable coupled network, semantic metric, sketch-based image retrieval, zero-shot learning

1 INTRODUCTION

WITH the proliferation of mobile devices, sketches can be
obtained effortlessly and massively by drawing on
tablets, phones and even smart watches. Due to they illus-
trate target objects visually and concisely, sketch-oriented
applications [1], [2], [3], [4], [5], [6], especially Sketch-Based
Image Retrieval (SBIR) [7], [8], [9], [10], [11], have garnered
considerable attention. However, conventional SBIR must
obey that the categories are same across the training and
testing stage, which is hard to guarantee in realistic scenar-
ios. Hence, Zero-Shot Sketch-Based Image Retrieval (ZS-
SBIR) [12], [13], [14], [15] has emerged recently, which con-
ducts SBIR under the setting of Zero-Shot Learning
(ZSL) [16], [17], [18], [19], as illustrated in Fig. 1. This task is
extremely challenging, since it requires the alignment
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learned at training stage between sketches and images can
be effectively transferred at testing stage.

Prior works on ZS-SBIR [12], [13], [14], [15], [20], [21], [22],
[23] can be roughly divided into two categories, depending
on whether they project sketches and images into a common
space [12], [14], [15], [20], [22], [23] or utilize generative
model to synthesize image features from sketch ones [13],
[21]. However, most of them generally follow the paradigm
of aligning multi-modal feature representations with extra
modules, e.g., discriminators or classifiers, without the
explicit modeling of heterogeneous feature extractors to
make themselves learn to align. We advocate that it will dete-
riorate knowledge transferability from seen categories to
unseen ones, since their feature extractors are prone to over-
fit on seen categories to achieve the goal of multi-modal
alignment. Specifically, previous works fine-tune pre-trained
models on sketches and images either separately or with
hard weight-sharing strategy (i.e., all corresponding weights
are same). We hold that there are two essential drawbacks:
(1) although using two-branch networks and fine-tuning
them individually on sketches and images can learn align-
ment to some extent, it inevitably introduces redundant
modality-specific parameters to over-fit the goal of multi-
modal alignment, which obviously performs poor when
meeting unseen categories at testing stage, (2) even though
employing hard weight-sharing strategy between heteroge-
neous backbones can jointly model sketches and images to
obtain certain alignment and eliminate modality-specific
parameters, the whole model prefers to learning on images
as the optimization on them is easier than on sketches, which
produces much irrelevant parameters for sketches and dete-
riorates its knowledge transferability. In brief, previous
works fail to design proper heterogeneous feature extractors
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Fig. 1. Zero-shot sketch-based image retrieval aims at performing
sketch-based image retrieval under the realistic scenario of zero-shot
learning.

for ZS-SBIR. Besides, prior researches generally adopt local
metric learning (e.g., triplet metric) and global semantic con-
straint (e.g., semantic regression) to improve feature discrim-
inability and transferability, respectively. However, they are
usually weighted with empirical coefficient to achieve the
trade-off, which is complicated for tuning hyper-parameters
at training stage.

Before devising the feature extractor of ZS-SBIR, we first
present a brief review of main components, e.g., convolu-
tional layer, pooling layer and batch normalization layer, in
modern convolutional neural network. As we all known,
convolutional layer is designed to mimic the primary visual
cortex in human brain, leveraging the ideas of sparse inter-
actions, parameter sharing and equivariant representations.
With the aid of pooling layer, they can capture the edges,
textures and parts of object progressively [24], which is able
to discover the patterns of input data. For batch normaliza-
tion layer, it is originally proposed to accelerate the training
by solving internal covariate shift [25]. Nonetheless, it con-
tains the calculation of batch-wise statistics, e.g., mean and
variance, and the memorization of dataset-wise statistics,
e.g., running mean and running variance, which can depict
the uniqueness of input modality.

Based on the observation and discussion above, we then
jointly consider the characteristics of network components
and the nature of ZS-SBIR task to frame our architecture.
Concretely, we need to learn modality-common information
and modality-specific ones for cross-modal retrieval, which
can be implemented with weight-shared convolutional
layers and independent batch normalization layers, respec-
tively. Furthermore, inspired by the intuition that human
beings rely on geometric patterns (e.g., contours) of sketches
and images to match them, we transform the weight-shared
heterogeneous convolutional layers into coupled ones via
soft weight-sharing strategy to effectively guide the learning
of images with sketch patterns, yielding a novel Transfer-
able Coupled Network (TCN) for ZS-SBIR. Based on this,
we explicitly present a general criterion, i.e., adopting cou-
pled modules for mining modality-common knowledge
while independent modules for learning modality-specific
information, to deal with multi-modal zero-shot learning.
Moreover, to simplify the complicated training procedure
of utilizing separate local metric learning and global seman-
tic constraint, we unify them through integrating global
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semantic information into the anchor generation of local
metric learning, producing a simple but effective semantic
metric.

The main contributions of this work are as follows:

e We frame a novel transferable coupled network to
force heterogeneous feature extractors learn to align
with similar geometric patterns, which effectively
improve knowledge transferability for ZS-SBIR.

e We elaborate a simple but effective semantic metric
by integrating local metric learning and global
semantic constraint, which significantly simplifies
the training procedure and boosts the performance.

e To our best knowledge, we are the first to explicitly
present a general criterion for multi-modal zero-shot
learning, which will greatly help the researchers to
tailor their own frameworks. Especially, it can be
seamlessly and effortlessly employed in zero-shot
and unsupervised domain adaptation.

e Extensive experiments on three popular large-scale
datasets, Sketchy, TU-Berlin and QuickDraw, dem-
onstrate that our approach outperforms the state-of-
the-art methods by a large margin.

The rest of this paper is organized as follows. We first
present a brief review in Section 2. Then we give a formal
problem statement of ZS-SBIR and propose our approach in
Section 3. Section 4 demonstrates the experiments, followed
by the conclusion in Section 5.

2 RELATED WORK

2.1 Sketch-Based Image Retrieval

With the release of two large-scale datasets, i.e., Sketchy [8]
and TU-Berlin [26], SBIR has attracted ever-increasing atten-
tion among computer vision community. Early works emp-
loyed hand-crafted features, e.g., gradient field HOG [27],
Histogram of Edge Local Orientations (HELO) [28] and
Learned KeyShapes (LKS) [7], to represent the sketches for
subsequent cross-modal retrieval. Recently, deep learning has
been introduced into this field and obtained appealing perfor-
mance. Sketch-a-Net [3] was the first to successfully apply
deep convolutional neural network for sketch recognition. To
further improve the discriminability of multi-modal feature
representation, siamese network [9] and triplet network [10]
were utilized for SBIR. Besides, Semi3-Net [11] employed
semi-heterogeneous architecture for feature mapping, with
the aid of edgemap. euclidean Margin Softmax (EMS) [29]
attempted to minimize both intra-class and inter-class dis-
tance. Visual Trait Descriptor (VID) [30] built a universal man-
ifold of prototypical visual sketch traits to parameterize the
learning of a sketch or image representation for fine-grained
SBIR. However, these methods are not specifically elaborated
for ZS-SBIR, meaning that they neglect the learning of knowl-
edge transfer from seen categories to unseen ones. In contrast,
our proposed architecture is elaborated to deal with SBIR and
ZSL simultaneously.

2.2 Zero-Shot Sketch-Based Image Retrieval

To investigate the transferability of learned cross-modal
representations under ZSL scenario, more realistic ZS-
SBIR [13], [14] works have been reported recently. Zero-shot
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Fig. 2. Our framework consists of transferable coupled network (i.e., coupled image and sketch encoders), feature embedding network, discrimina-
tion module and semantic metric module. Specifically, the first one includes soft weight-shared convolutional layers (i.e., constrained with Lg5) and
independent batch normalization layers. Retrieval features are obtained through feature embedding network, along with discrimination loss £ ;s and
semantic metric loss L), At training stage, the guiding signals produced from teacher network as well as benchmark one-hot labels are provided
to calculate £p;s. Similarly, word vectors and uniform noise are offered to compute Lz, .

Sketch-Image Hashing (ZSIH) [12] leveraged two-branch
encoders and semantic graph to tackle their introduced
zero-shot hashing task of SBIR. Conditional Variational
AutoEncoders (CVAE) [13] attempted to solve ZS-SBIR via
generative model to synthesize natural image features from
sketch features. SEM-PCYC [15] employed more compli-
cated generative model and cycle consistency to learn better
modality-common embedding. Content-Style Decomposi-
tion (CSD) [21] generated style-guided image features via
decomposition and fusion technologies for retrieval. Seman-
tic-Aware Knowledge prEservation (SAKE) [20] fine-tuned
hard weight-sharing feature extractors while kept the
knowledge acquired from ImageNet [31], which yields
state-of-the-art performance while requires specialistic
designing of data sampling to avoid severe imbalanced
learning. However, all works either simply adopt the mod-
els pre-trained on ImageNet as feature extractors [13], fine-
tune individual backbones to over-fit the goal of multi-
modal alignment [15], or adopt hard weight-sharing strat-
egy between various backbones [20], leading to unsatisfied
zero-shot retrieval performance. Different from them, we
learn to align sketch and image feature representations
from the perspective of modeling heterogeneous feature
extractors themselves, instead of aligning category-level
heterogeneous features.

2.3 Zero-Shot Metric Learning

Metric learning has played a great role in several tasks.
Recently, many works attempt to extend it into the field of
ZSL. Early work [32] improved semantic embedding consis-
tency during pairwise metric learning for zero-shot classifi-
cation. Adaptive Metric Learning (AML) [33] treated the
most similar seen category samples as substitution of
unseen ones to regularize the compatibility metric function.

Decoupled Metric Learning (DeML) [34] strengthened the
generalization ability of model by decoupling unified repre-
sentations into multiple attention-specific learners. Model-
Agnostic Metric (MAM) [35] leveraged cosine metric to alle-
viate hubness problem. However, none of them considers
local metric learning and global semantic constraint simul-
taneously. In contrast, our proposed semantic metric com-
bines them into a unified formula, which significantly
simplifies the training procedure.

3 METHODOLOGY

In this section, we first introduce the problem of ZS-SBIR.
Then we detail our proposed framework, which consists of
transferable coupled network (i.e., coupled image and
sketch encoders), feature embedding network, discrimina-
tion module and semantic metric module, as illustrated in
Fig. 2. Specifically, multi-modal representations are first
obtained from the transferable coupled network. Then
retrieval features are generated via feature embedding net-
work, with the aid of discrimination learning and semantic
metric learning.

3.1 Problem Statement

The dataset of ZS-SBIR consists of two disjoint parts, i.e.,
DTr = {17 ST} and D™ = {I%¢, §7¢}, where I and S are the
subsets of natural images and sketches, respectively. The
superscripts Tr and Te stand for training and testing split,
and ZSL setting indicates that D" N D¢ = (). During train-
ing stage, in addition to D", the category-level one-hot vec-
tor Y© (e.g., hard label) and semantic vector YS (e.g., word
vector [36]) are provided to train the model. At testing stage,
given a sketch query, the learned model is to retrieve corre-
sponding natural images from testing image gallery. There-
fore, the essence of ZS-SBIR is to make the learned multi-
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Fig. 3. Training loss and validation accuracy versus the number of itera-
tions with 64 dimensional features on Sketchy.

modal alignment transferred from seen categories to unseen
ones. This produces extremely high requirements on
designing of network architecture.

3.2 Transferable Coupled Network

Since sketches lack the detailed information, such as color
and texture, the models pre-trained on ImageNet are inca-
pable of extracting sketch features. Hence, prior works [12],
[14], [15] mostly fine-tune the pre-trained models with two
individual branches for feature extraction. However, they
still perform poor when meeting unseen categories at test-
ing stage, as they introduce modality-specific parameters to
over-fit the goal of multi-modal alignment. Intuitively, we
need to make heterogeneous feature extractors themselves
capable of aligning sketch and image representations,
instead of merely aligning the multi-modal features. There-
fore, recent work, i.e.,, SAKE [20], attempts to jointly model
sketches and images with hard weight-shared backbones.
Unfortunately, the whole model is prone to optimize on
image modality and generates much irrelevant parameters
for the feature extraction of sketches, thus performing poor
on knowledge transferability at testing stage.

Hence, we propose a novel transferable coupled network
for ZS-SBIR, to force heterogeneous feature extractors to
explicitly learn similar geometric information, via guiding
the learning of images with sketch patterns. Fundamentally,
given sketches and images, their feature representation can
be formulated as

FS:gS(S;QS)a FI:gI(I;OI)a (€]
where Gg and G; are sketch encoder parameterized with 6g
and image encoder parameterized with 6;, respectively. F**
and F! denote feature representations of sketches and
images extracted after the final convolutional stage. Then
we formally describe the core component of transferable
coupled network as

Lsws = Z 1[i¢ BN]- |6 — 6415, (2)
7

where 6% and @) are parameters of sketch encoder Gs and
image encoder G; at layer [, respectively. This fashion of soft
weight-sharing, i.e., |65 — 6}|3, forces the image encoder to
model geometric patterns of images through the guiding of
sketch parameters. Besides, the indicator function 1[/ ¢ BN]
equals to 1 if the layer [ of sketch or image encoder is not the
batch normalization layer, and 0 otherwise. Here, indepen-
dent batch normalization layers are adopted to separate
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modality-common information from modality-specific one
for cross-modal retrieval.

In what follows, we present a detailed comparison of
existing two strategies, i.e., hard weight-sharing and soft
weight-sharing, to verify the effectiveness of our proposed
transferable coupled network, from the perspective of opti-
mization and experimental results respectively.

Mathematically, given the sketch network g, parameter-
ized with 6, and image network g; parameterized with 6;,
the loss can be formulated as

3

where y, and y; are labels of input sketches z, and images
x;, and A is coefficient of soft sharing loss. For hard weight-
sharing, i.e., 6 = 6, = 0;, the third loss is equal to 0. Thus,
the gradient of 0 is calculated as

% _ aﬁs(gs(xs;e)vys) +£7(gl($l79)7y1) (4)

B 36 ’
which will be dominated by image modality as the image
contains visual cues such as color and texture that makes it
easier to be classified than the iconic and abstract sketch.
This can be verified in Fig. 3a that the training loss (i.e., red
lines) of image modality decreases faster than the one of
sketch modality. Similarly, the high validation accuracy
(i.e., red line in Fig. 3b) and low retrieval performance in
Table 4 indicate the learning of hard weight-sharing is dom-
inated by image modality, namely, the learning is imbal-
anced. For soft weight-sharing, the gradient of 6, can be
described as

oL o aﬁs(gs(xs; 05)7?-/3) + )‘H99 — 97“3

= _ (5)
06, 905

Similarly, the gradient of 6; is
0L _ ALi(g(xi16:), i) + A6 — 6illy )

00; 3;

We can find that it can achieve better trade-off between
sketches and images, which significantly alleviate the prob-
lem of imbalanced learning. Specifically, when the image
model prefers to learn the parameters suitable for image
modality during each optimization step, the sketch model
has a degree of liberty to learn the parameters suitable for
sketch modality. Hence, the soft weight-sharing loss pro-
duced by the difference of parameters will prevent the
image model learning too much from image modality. It
can be verified by the higher training losses (i.e., blue lines)
in Fig. 3a. Moreover, the acceptable validation accuracy
(i.e., blue line in Fig. 3b) and high retrieval performance
imply the imbalanced learning of hard weight-sharing is
effectively alleviated. On the other hand, it is also necessary
to employ soft weight-sharing, since the modalities are
related but not the same, especially at the low-level stages.
Therefore, the learning of natural images can be guided
with the weights of sketch encoder, which makes them-
selves capable of capturing similar geometric patterns.
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Fig. 4. Analysis of top-30 singular values (max-normalized in each
modality) with 64 dimensional features on Sketchy.

Then we confirm the advantage of using soft weight-
sharing strategy from Fig. 4 by analyzing Singular Value
Decomposition (SVD) on sketch and image representations,
respectively. Based on the spectral analysis, feature repre-
sentations can be decomposed into eigenvectors with
importance quantified by the corresponding singular val-
ues. Obviously, there are more large singulars in training
sketch features than image ones when adopting hard
weight-sharing strategy. However, the sketches are sparse
and should need fewer large singulars and its eigenvectors
to describe. From this perspective, we make sure the learn-
ing is imbalanced (as illustrated in Fig. 3) and over-fitting is
occurred (as illustrated in Fig. 4) when adopting hard
weight-sharing, as the feature backbone also learns more
large singulars at training stage than at testing phase to
describe sketches. In contrast, it is more reasonable that
there are less large singulars in training sketch features
when utilizing soft weight-sharing strategy. Besides, the
curves of training and testing sketch features are not far
apart, indicating the sketch encoder trained on seen catego-
ries can be effectively transferred on unseen ones.

Furthermore, we explicitly present a general criterion for
multi-modal zero-shot learning, namely adopting coupled
modules for exploring modality-common knowledge while
independent ones for capturing modality-specific informa-
tion. Experimental results show that it can be seamlessly
employed in other related tasks, e.g., zero-shot and unsu-
pervised domain adaptation.

3.3 Feature Embedding Network
The original dimension of sketch and image features after
encoding is usually too large, e.g., 2048, to perform retrieval
in realistic scenario. Hence, to reduce the dimension of
extracted feature for subsequent cross-modal retrieval, a
common network Gp parameterized with 6 is introduced
to generate retrieval features. Specifically, the retrieval fea-
ture R of sketch and the retrieval feature R’ of image can
be defined as

RY = Gr(F%;0r), R!'=Gr(F.;0R). (7)
Meantime, to improve feature discriminability, the standard
classification and knowledge distillation [37] are employed
by following the SAKE [20], which studies the connection
between zero-shot learning and incremental learning, and
introduces the distillation loss to effectively prevent the cat-
astrophic forgetting problem in ZS-SBIR. Mathematically,
each one can be implemented with single fully connected
layer, which can be formulated as

9185

0% = Gc(R;6c), O" =Gr(R;0r), ®)

where O° and O stand for the outputs of classification
branch (G¢ parameterized with 6¢) and knowledge distilla-
tion branch (Gr parameterized with 67), respectively. For
simplicity, the input R can be either sketch retrieval feature
RS or image retrieval feature R’.

Based on the outputs of classification and knowledge dis-
tillation branch, we compute the discrimination loss, which
includes classification loss and distillation loss, as

1 N 1 N
Lpis=—Y —YClogP’ +=%" —YTlogP?,
DIS N; i gL N; i gL (9)

PC = Softmax(0), P! = Softmax(O7),

where Y” and P are sample-level one-hot label and nor-
malized probability of classification branch, respectively.
Similarly, Y/ and P! are sample-level supervised signal
from teacher network, and normalized probability of
knowledge distillation branch.

The teacher network utilized for knowledge distillation
can be any models pre-trained on ImageNet. Following
SAKE [20], we adopt the same model of image encoder as
teacher network to regularize the feature embedding gener-
ated from student network, i.e., image encoder. Here, the
teacher network is employed to address the catastrophic
forgetting, which means eliminating most previously
acquired knowledge with fresh ones, when fine-tuning the
pre-trained models on target image dataset. Hence, to keep
their knowledge learned from ImageNet, which maybe use-
ful for unseen categories, we force the image encoder to
behave like the teacher network. Experimental results vali-
dates its effectiveness even if some categories are not pres-
ent in the 1,000 classes of ImageNet.

3.4 Semantic Metric Learning
To improve feature discriminability for cross-modal
retrieval, prior works [10], [14] adopt local metric learning,
e.g., triplet metric. Besides, they also tend to utilize global
semantic constraint, e.g., semantic regression, to improve
feature transferability. However, most works attempt to
optimize these two separate losses with empirical coeffi-
cient, which is complicated for training. In following, we
first give an in-depth analysis of these two losses and then
propose a concise yet effective semantic metric to simulta-
neously incorporate local metric learning and global seman-
tic constraint into a unified formula, as illustrated in Fig. 5.
The goal of metric learning, e.g., triplet metric learn-
ing [38], [39] in this paper, is to force the semantically simi-
lar samples close in embedding space while the dissimilar
ones far away. Furthermore, in order to efficiently take
advantage of triplets, for each anchor sample, we select the
hardest positive (the farthest positive) and hardest negative
(the nearest negative) samples within each batch. As for
semantic regression, previous methods usually drive the
embedding of retrieval features close to their category-level
semantic vectors. Based on the analysis above, we observe
that the uniqueness of semantic vector in each category
makes it greatly suitable to be a global anchor. Hence, we
ropose a unified formula and mathematically define it as
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Fig. 5. The illustration of our proposed semantic metric within each batch. First, the semantic anchor (e.g., the yellow point with dotted circle) is gener-
ated by taking semantic representation and uniform noise as inputs. Then the hardest negative and positive sample are determined based on the
new anchor. We believe that new anchor will be more central in its class center than other samples. Finally, we optimize the embedding by minimizing

the positive distance (e.g., d,.s) and maximizing the negative one (e.g., d,.,).

R = Ga(Y);04),
R} =R+ (1— )R}, a ~U(0,1),

RJ{D = argcmaé(DiSt(Rvak)v (10)
Ry

ij = arg min Dist(fif, Ry),
kY C#YC

where G, is the single fully connected layer parameterized
with 64 to translate semantic vector Y;* into feature embedding
R$4. Then the new semantic-based anchor R is generated via

uniform interpolation. Based on it, Rf and Rj-v are selected as
the hardest positive sample and the hardest negative one,

respectively. Then the semantic metric loss can be described as

B
Lsp =Y 8(Dist(R, RY) — Dist(R, RY)).

J=1

1)

We adopt standard euclidean distance as the Dist function,
and Softplus activation as the § function. Here, we advocate
the generation of anchor R]‘-l has two advantages: (1) it natu-
rally incorporates the global semantic constraint into local
metric learning, overcoming the instability of local metric
learning and meantime improving the transferability of fea-
tures, (2) the uniform interpolation acts like data augmenta-

tion, which will help the training of whole model.

3.5 Training and Inference
After the description of our framework and losses, the full
objective of our approach can be formulated as

L = AswsLsws + AprsLpis + AsemLse, (12)

where A\sws, Aprs and Aggy are coefficients to balance the
overall performance, and all losses are trained end-to-end
simultaneously. Here, after obtaining retrieval features, the
discrimination loss as well as the semantic metric loss are
employed atop of them, without distinguishing between
sketches and images. The overall optimization can be sum-
marized as Algorithm 1.

At testing stage, given a sketch query from testing set, we
retrieve corresponding images from the retrieval gallery
and rank the results based on their cosine distances to the
sketch query. To make fair comparison to prior works [12],
[20], the performance of binary hashing, which is encoded
as binary code from real-valued feature to accelerate
retrieval speed, is also evaluated. Specifically, we generate
the hash codes by applying ITerative Quantization
(ITQ) [40] algorithm on real-valued retrieval features.

Algorithm 1. Optimization Algorithm.

Input: Training dataset D' = {1, S7" Y* Y%}, maximum
training epochs Ng, batch size Np, Agws=1,000, Aprs =1,
Asem=1

Output: Learned model parameters 6g, 61, 0, 6c, 07,04

1: Initialize parameters 6s, 6, 0r, 6c, 07,04

2: repeat

3:  Sample mini-batch data {I;, S;, YC, Y5} '2
Forward model to generate R?, R/, O¢, OF | R4
Calculate

SWS DIS SEM
LS rDIS

L — AswsLsws + AprsLprs + AsemLsem
Update 05 < —vy (L)
Update 6; & —vy,(£)
9:  Update 0p < —vg, (L)
10:  Update 6¢ <+ —vy,, (L)
11:  Update 6 <& —vq,. (L)
12:  Update 64 < —vy, (L)
13: until max training epochs N is reached;

4 EXPERIMENTS

4.1 Datasets and Settings
In this paper, three popular large-scale benchmarks, i.e.,
Sketchy [8], TU-Berlin [26] and QuickDraw [14], are
adopted to evaluate our proposed approach. The overall
statistics of them are reported in Table 1 and the qualitative
comparison is illustrated in Fig. 6.

Sketchy [8] originally consists of 75,471 sketches and
12,500 images from 125 categories. In [41], the extended ver-
sion is released by collecting extra 60,502 images from
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TABLE 1
The Statistics of Three Datasets
Sketchy TU-Berlin QuickDraw

#Sketches 75,471 20,000 330,000
#Sketches per Class ~ 500 80 3,000
#Images 73,002 204,489 204,000
#Images per Class 600-700 ~ 764 ~ 1,854
#Classes 125 250 110
#Training Classes 100/104 220 80
#Testing Classes 25/21 30 30

ImageNet, yielding a total of 73,002 natural images. Follow-
ing [12], [20], we randomly select 25 categories for testing
and the remaining 100 categories for training, which we
refer as splitl. Besides, if the selected testing categories are
also present in the ImageNet dataset, it will violate the
assumption of ZSL. Therefore, a more careful and challeng-
ing split, i.e., split2, is utilized in [13], which consists of 21
testing categories that are not present in the ImageNet data-
set and 104 training categories.

TU-Berlin [26] only consists of 20,000 free-hand sketches
evenly distributed over 250 categories for sketch classifica-
tion and recognition. To perform cross-modal retrieval, the
extended version containing 204,489 natural images is
adopted in [42]. Following [12], [20], we randomly select 30
categories for testing and the rest 220 categories for training.
Here, each testing category is required to have at least 400
natural images to guarantee the retrieval.

QuickDraw [14] is recently released by taking the practi-
cal factors, e.g., large domain gap and larger scale, into con-
sideration. It consists of 330,000 sketches and 204,000
images from 110 categories. Following [14], we adopt 30 cat-
egories for testing and the remaining 80 categories for train-
ing. There are 3,000 sketches and about 1,854 images in each
category, which will help to better understand the problem
of ZS-SBIR in realistic scenario.

For evaluation criteria, mean Average Precision (mAP)
and Precision (Prec) are employed to compare the perfor-
mance of all methods.

4.2 Implementation Details

All experiments are implemented with PyTorch [44] package
on two TITAN XP GPUs. We adopt the ResNet-50 [45] pre-
trained on ImageNet as the backbone. It is also used as
teacher network for knowledge distillation. Besides, to

M

(a) Sketchy

(CPNA

.
Lo

(b) TU-Berlin
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evaluate the effect of using different feature backbones, we
also conduct experiments with VGG networks, SE-ResNet-
50 [46] and CSE-ResNet-50 [29] by following [14], [20]. Dur-
ing training stage, paired sketches and images are loaded
simultaneously and processed for subsequent classification,
knowledge distillation and metric learning. We extract word
vectors [36] as category-level semantic information via the
text model pre-trained on Googel News Dataset [47].

We train the model with Adam [48] optimizer and set its
weight decay as 5 x 107*. The batch size and maximum
number of training epochs are 32 and 10, respectively. The
learning rate starts at 1 x 10~* and exponentially decays to
3 x 1076 during training. Ap;s and Aggy are set to 1 while
Asws is set to 1,000, which is empirically determined by the
retrieval performance. The best model is selected through
sketch recognition on validation set, which is a partial of
training sketches. It should be noted this validation is more
reasonable and fair than performing retrieval on the half of
testing samples in [15].

4.3 Comparison With Existing Methods

Quantitative Comparison. To make comprehensive compari-
son of our proposed approach and existing methods, the
performance of three prior works on SBIR, i.e., GN-Trip-
let [8], DSH [41] and EMS [29], two zero-shot methods, i.e.,
ZSH [43] and SAE [18] and five prior works on ZS-SBIR, i.e.,
ZSIH [12], CAAE and CVAE [13], Doodle [14], SEM-
PCYC [15] and SAKE [20] are demonstrated in Table 2. We
can observe that our approach consistently outperforms all
these methods by a large margin, even on the challenging
TU-Berlin and QuickDraw datasets. Specifically, it outper-
forms state-of-the-art methods by more than 12% on Sketchy
dataset and 2% on TU-Berlin dataset using 64-bit binary
hashing codes. It also outperforms state-of-the-art methods
on more practical QuickDraw dataset, which yields more
than 6% improvement in terms of retrieval performance. The
way of sketch creation plays a pivotal role in retrieval perfor-
mance, as illustrated in Fig. 6. Specifically, when creating
sketches of Sketchy dataset, the crowd workers have corre-
sponding photos as reference at drawing time, which produ-
ces highly detailed or less abstract sketches. For TU-Berlin
and QuickDraw dataset, workers are asked to draw sketches
giving them only the name of category, thereby generating
more abstract and diverse sketches. Hence, the quality of
sketches, e.g., the degree of abstract and diverse, severely
affects the retrieval performance.

(c) QuickDraw

Fig. 6. The Qualitative comparison of Sketchy, TU-Berlin and QuickDraw datasets.
Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 18,2023 at 11:57:33 UTC from IEEE Xplore. Restrictions apply.
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TABLE 2
The Comparison of ZS-SBIR Performance Between TCN and Existing methods
Method Dimension TU-Berlin Sketchy Splitl Sketchy Split2 QuickDraw
mAP@all Prec@100 mAP@all Prec@100 mAP@200 Prec@200 mAP@all Prec@100
SBIR GN-Triplet [8] 1024 0.189 0.241 0.211 0.310 0.083 0.169 - -
DSH [41] 6471 0.122 0.198 0.164 0.227 0.059 0.153 - -
EMS [29] 512 0.259 0.369 - - - - - -
6471 0.165 0.252 - - - - - -
ZSL SAE [18] 300 0.161 0.210 0.210 0.302 0.136 0.238 - -
ZSH [43] 64+ 0.139 0.174 0.165 0.217 - - - -
ZS-SBIR ZSIH [12] 64+ 0.220 0.291 0.254 0.340 - - - -
CAAE [13] 4096 - - 0.196 0.284 0.156 0.260 - -
CVAE [13] 4096 - - - - 0.225 0.333 0.003 -
Doodle [14] 256 0.109 - - - 0.460 0.370 0.075 -
SEM-PCYC [15] 64 0.297 0.426 0.349 0.463 - - - -
6471 0.293 0.392 0.344 0.399 - - - -
SAKE [20] 512 0.475 0.599 0.547 0.692 0.497 0.598 - -
6471 0.359 0.481 0.364 0.487 0.356 0.477 - -
ZS5-SBIR TCN 512 0.495 0.616 0.616 0.763 0.516 0.608 0.140 0.231
64+ 0.381 0.506 0.488 0.644 0.401 0.514 0.110 0.150
Here, “1” denotes experiments using binary hashing codes while the remaining use real-valued features for retrieval. “-” indicates the results are not presented by

the authors.

To evaluate the effectiveness of TCN, we also conduct
experiments on the more challenging Sketchy split2, which
strictly selects the categories out of the ImageNet as testing
set. The results reported in Table 2 show that our proposed
TCN significantly beats the existing state-of-the-art meth-
ods, which proves our method can learn better transferable
cross-modal representation for ZS-SBIR.

Qualitative Comparison. The retrieval results on three data-
sets are demonstrated in Fig. 7. We observe that most
retrieved candidates belong to the same category of their
queries. However, the fourth sample on Sketchy dataset,
umbrella, has too similar shape with the ray (a kind of fish) to
obtain wrong retrievals. In the fourth row of TU-Berlin data-
set, the fan fails to retrieve correct images as its shape is also
similar to windmill. Besides, the canoe, the third row of TU-
Berlin dataset, has similar shape with the piece of pizza or
similar warping edge with whole pizza, thereby leading to
wrong retrieval results. The main reason maybe lies in that
the model confuses about the examples with similar shapes
as the sketches lack visual cues such as color, texture and
background. On QuickDraw dataset, the sketches are rough
conceptual abstractions of images, e.g., the raccoon in the
fourth row, which cannot even be identified by the human.
Similarly, the candidates are mostly determined by their
shape, leading to unsatisfied performance when the query
and candidates have similar shape, e.g., the shark and airplane
in the second row. On the other hand, it also confirms that
TCN effectively forces the image encoder to capture geomet-
ric information by the guiding of sketch branch. We also pro-
vide the retrieval results of the selected 8 categories (i.e., cup,
swan, harp, squirrel, snail, ray, pineapple, volcano) on
Sketchy in Fig. 8 to help to understand how the model works.

4.4 Results Analysis

Feature Backbone. In order to make fair comparison with pre-
vious works [13], [14], [15], we also adopt VGG network as
the feature backbone as well as teacher network. At the

meantime, we keep everything else the same. Specifically, we
employ VGG16 and VGG19 network with batch normalization
layers, which can be easily obtained from the PyTorch reposi-
tory. The effect of utilizing spatial attention module [10], [14] is
also evaluated in the backbone. Moreover, following prior
works [20], [29], SE-ResNet-50 and CSE-ResNet-50 are also
evaluated for fair comparison. First, we observe that ResNet-
50 performs better than other architectures in our proposed
TCN, as it has more advanced network structures than VGG
networks while contains fewer parameters, which are irrele-
vant with convolutional operation for modeling patterns, than
its modified versions. Second, our approach still beats the
method, SEM-PCYC [15], via adopting the same VGG back-
bone. Finally, using spatial attention module in VGG networks
will slightly increase or achieve comparable performance. The
comparison is summarized in Table 3.

Weight-Sharing Strategy. To verify the effectiveness of each
component, we conduct detailed ablation studies in Table 4.
First, the performance is poor when adopting no weight-
sharing strategies. We argue that the model is over-fitting,
since its validation results of sketch recognition we observed
are pretty high. Then the model using hard weight-sharing
strategy obtains slightly better performance as it forces the
model using same parameters except modality-specific batch
normalization layers to jointly modeling sketches and
images. As we all known, the discrimination loss atop of the
feature encoders can be more easily optimized on image
modality than the sketch, which makes these parameters
more suitable for the natural images and ignores the learning
of sketches. To balance the joint modeling, we simply
attempt to weight the losses of different modalities. How-
ever, the performance is still poor whether the weight coeffi-
cient increases or decreases. Our proposed soft weight-
sharing strategy outperforms the former variants by a large
margin via guiding the learning of natural images with
sketch patterns, which strongly verifies its effectiveness as
well as superiority. We further confirm that our approach
can extract heterogeneous features appropriately through

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on July 18,2023 at 11:57:33 UTC from IEEE Xplore. Restrictions apply.



WANG ETAL.: TRANSFERABLE COUPLED NETWORK FOR ZERO-SHOT SKETCH-BASED IMAGE RETRIEVAL 9189

(c) Retrieval results on QuickDraw dataset

Fig. 7. Top-13 retrieval results of testing samples on three large-scale datasets by using 64 dimensional real-valued features. The blue ticks stand for
correctly retrieved candidates while the red crosses denote wrong retrievals.
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Fig. 8. Retrieval results of the random selected 8 categories on Sketchy dataset.

the analysis of singular values of each modality in Fig. 9. This
character maybe be helpful when exploring what is the best
architecture of ZS-SBIR. The t-SNE visualization also shows
the effectiveness of our proposed weight-sharing strategy in
Fig. 10. Compared to the counterparts without using weight-
sharing strategy, our method with weight-sharing strategy

TABLE 3
Performance Comparison of Using Different Backbones in TCN
with 64 Dimensional features

Backbone Attention Sketchy Split1
mAP@all Prec@100

VGGI16 0.408 0.524
VGG16 v 0.414 0.523
VGG19 0.435 0.543
VGG19 v 0.442 0.549
ResNet-50 0.582 0.711
SE-ResNet-50 0.499 0.627
CSE-ResNet-50 0.509 0.625

Here, Attention denotes spatial attention module [10], which aims to focus on
fine-grained details.

significantly improves the retrieval performance on most cat-
egories, as illustrated in Table 5. It should be noted that the
wine bottle and butterfly have the biggest (i.e., 316.5%) and
smallest (i.e., -5.0%) relative increase. In addition, we con-
duct experiments to track the training losses on sketch and
image modality as well as the validation accuracy of sketch
that varies with the number of iterations, as illustrated in
Fig. 3. For both hard and soft weight-sharing, the loss on
image modality decreases faster than on sketch modality,
indicating the model prefers to learn parameters suitable for
image modality during each optimization step. For hard
weight-sharing, the training losses are very small and the
validation accuracy of sketch is pretty high. However, the
retrieval performance is poor, which means over-fitting is
occurred at training stage. In contrast, using soft weight-
sharing achieves much better retrieval performance at the
expense of large training losses on sketch and image.
Semantic Metric. From Table 4, we can observe that using
original batch hard triplet metric learning yields no signifi-
cant improvement of performance. We advocate that local
feature metric learning helps SBIR but has difficulty in
addressing ZS-SBIR, since it lacks the global guidance to
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TABLE 4
Ablation Studies of Individual Component in TCN With 64 Dimensional Features

Component Variant Sketchy Splitl TU-Berlin
mAP Prec mAP Prec
@all @100 @all @100
Weight-Sharing w/o 0.368 0.449 0.318 0.379
Hard (0.1: 1) 0.403 0.508 0.337 0.430
Hard (1: 1) 0.399 0.520 0.335 0.438
Hard (10: 1) 0.367 0.488 0.333 0.445
Soft 0.582 0.711 0.470 0.569
Semantic Metric w/o 0.557 0.691 0.465 0.563
BHT 0.567 0.702 0.466 0.562
BHT+SR (1:0.1) 0.571 0.703 0.470 0.566
BHT+SR (1:1) 0.570 0.702 0.470 0.565
BHT+SR (1:10) 0.569 0.700 0.469 0.565
SBHT 0.582 0.711 0.470 0.569
Teacher Network w/o 0.480 0.649 0.457 0.562
With 0.582 0.711 0.470 0.569

Here, Hard and Soft denote hard weight-sharing and soft weight-sharing strategies, respectively. Besides, BHT, SBHT and SR stand for traditional batch hard
triplet metric, our proposed semantic batch hard triplet metric and semantic regression.

ensure the transferablity of whole model. Then we imple- Furthermore, when we integrate the semantic information
ment experiments through combining separate batch hard into traditional metric learning, it remarkably boosts the
triplet and semantic regression. It slightly outperforms the performance. This comparison greatly demonstrate the
method of using local metric learning, i.e., batch hard trip- superiority of our proposed semantic metric, which is
let, no matter the weight coefficient increases or decreases. extremely concise yet effective. Besides, more clustered
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Fig. 9. The results of top-30 singular values (max-normalized in each modality) with 64 dimensional features on Sketchy.

Volcano I

(c) Without Semantic Metric (d) With Semantic Metric

Fig. 10. Left: t-SNE results of using 64 dimensional features on the random selected 8 testing categories of Sketchy. The dot and cross stand for nat-

ural image and sketch, respectively. Right: corresponding retrieval examples.
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TABLE 5
The Performance Improvement (Relative Increase) of the Random Selected 8 Categories at Testing Stage With 64 Dimensional
Features on Sketchy

Comparison Cup Swan Harp Squirrel Snail Ray Pineapple Volcano Rifle Scissors
WS 32.9% 8.4% 189.3% 14.7% 57.8% 106.3%  48.2% 59.6% 23.7% 52.4%
SM 1.3% 11.5% 10.6% -5.7% -1.4% -9.7% 0.4% 10.0% 3.6% 1.7%
Comparison Parrot Windmill Teddy Bear Tree Wine Bottle Deer Chicken Airplane Wheelchair Tank
WS 29.7% 84.8% 279.3% 141.7% 316.5% 36.2% 77.9% 34.3% 30.1% 50.7%
SM 14.9% -0.7% 4.7% 9.5% 7.2% 1.4% 17.5% 11.1% 8.7% 8.5%
Comparison Umbrella Butterfly Camel Horse Bell

WS 264.1% -5.0% 68.2% 64.0% 239.7%

SM -7.8% 8.4% -1.4% 10.9% 21%

WS stands for the comparison of soft weight-sharing versus without weigh-sharing and SM represents the comparison of semantic metric versus without seman-

tic metric.

map can be observed in Fig. 10, which also confirms its
effectiveness. In contrast to the counterparts without using
semantic metric, the utilization of proposed semantic metric
improves the retrieval performance on most categories, as
illustrated in Table 5. It is worth nothing that the chicken
and ray have the biggest (i.e., 17.5%) and smallest (i.e.,
-9.7%) relative increase. We also conduct experiments to
verify that semantic anchor is more central and stable than
sketch or image sample in each batch, as illustrated in
Fig. 11. Specifically, we observe that semantic anchors are
much closer to the corresponding class centers than batch
samples, which means they are more central than other
samples, i.e., images and sketches in each batch, as illus-
trated in Fig. 11a. The euclidean distance between semantic
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Fig. 11. The euclidean distance versus the number of iterations with 64
dimensional features on Sketchy.
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Fig. 12. The results of mAP@all between TCN and existing zero-shot
hashing methods. 32 bit, 64 bit, and 128 bit denote the different length of
binary hashing codes.

anchors of adjacent iteration is very small (i.e., less than
0.0035 in Fig. 11b), which indicates that the semantic anchor
changes slightly during training stage.

Teacher Network. The extra prior knowledge contained in
teacher network provides strong regularization for feature
embedding, which is proved to be effective among plentiful
tasks, including ZS-SBIR. It should be noted that our
approach still outperforms most methods even without
adopting teacher network as illustrated in Table 4, reflecting
the superiority of our proposed TCN.

Length of Hashing Code. In Fig. 12, we compare our
approach with existing zero-shot hashing methods, e.g.,
ZSH [43], ZSIH [12] and SAKE [20], on Sketchy dataset. Spe-
cifically, the TCN outperforms state-of-the-art methods by
more than 10.8%, 12.4% and 13.8% with 32-bit, 64-bit and
128-bit hashing codes. As expected, the performance gap
increases along with the length of hashing codes, which
strongly proves the effectiveness of our proposed approach.

Effect of Coefficient. In Fig. 13, we analyze the effect of
hyper-parameters Agyg. For simplicity, we fix the coeffi-
cients Aprs and Asgyr, which means Aprs = Asgayr = 1 for all
experiments. When Agys = 0, the model adopts two indi-
vidual base feature extractors to extract features, which gets
poor performance due to the over-fitting. The performance
increases along with the Agys and reaches the peak value at
1,000.

Effect of Coefficient

0.66

Sketchy mAP@all

TUBerlin mAP@all

Sketchy Prec@100
0.56 TUBerlin Prec@100
0.46
0.36
0.26

0 1 10 100 1000 10000

Fig. 13. The effect of using different Ag;y5. Here, the results of mAP @all
are compared with 64-bit binary hashing codes.
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TABLE 6
Classification Accuracy of Digit Images

Method MNIST (S) — MNIST-M (T)
Source Only 52.2%
DANN* 92.4%
DANN*+TCN 93.9%

Here, S and T stand for source and target domain, respectively. And the
*denotes it is implemented by the public code.

Extension of TCN. We believe that our proposed approach
can be extended into many tasks, such as zero-shot domain
adaptation [49], [50] and unsupervised domain adapta-
tion [51], [52]. Since there are no accessible code for the for-
mer task, we conduct experiments on the later one to
evaluate the expandability of our proposed strategy. We
choose the classic method, DANN [51], as competitors to
perform the adaptation from source MNIST to MNIST-M.
Here, the target dataset is generated by blending digits
from the MNIST over patches randomly extracted from
color photos of BSDS500 dataset [53]. From Table 6, we
observe that partial soft weight-sharing strategy can signifi-
cantly boost the classification performance, which shows
the great potential of our approach among related tasks.

5 CONCLUSION

In this paper, we propose a novel transferable coupled net-
work to handle the task of ZS-SBIR, which is able to learn a
better transferable cross-modal representation than state-of-
the-art methods. Furthermore, we explicitly introduce a
general criterion for multi-modal zero-shot learning, which
can be seamlessly and effortlessly employed in other related
tasks. Moreover, a simple but effective semantic metric is
adopted to significantly improve feature discriminability
and trasferability.

In the future, we should first dig deep into the relation-
ship between singular values and feature modeling. Next
we should devote more efforts on the feature extraction of
sketches to address the problems of deformation and visual
sparsity. The latter one could be addressed by exploring
augmented data, such as the retrieved natural images on
Internet. Besides, the way of utilizing auxiliary information,
e.g., word vectors or attributes, should also be emphasized
to improve the transferability of whole model. Finally, we
will also explore the semantic metric in other zero-shot tasks
in the future, such as zero-shot classification and zero-shot
semantic segmentation.
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