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Abstract—Training-free deepfake image detection aims to dis-
cern whether inputs are authentic or synthetic by directly conduct
evaluation on testing samples. Prior approaches predominantly
measure the similarity between original images and perturbation-
generated versions. Leveraging pre-trained foundation models
like DINOv2, these methods typically deliver remarkable detec-
tion performance on natural images. However, their effectiveness
diminishes significantly when applied to deepfake face detection,
particularly for faces of varying resolutions. Additionally, the
computational demands are high due to the complexity of these
foundational models, hindering the application in real-world
scenarios. To overcome these challenges, we elaborate a simple
yet effective Upsampling-Perturbation-Downsampling method for
training-free deepfake face detection. This approach enhances
both the robustness against diverse input resolutions and the
efficiency of detection process. Extensive experiments on our
augmented DeepFakeFaceForensics dataset demonstrate that our
approach significantly outperforms state-of-the-art methods.

Index Terms—deepfake face detection, perturbation-based,
training-free, resolution-robust, efficient detection

I. INTRODUCTION

In recent years, deep generative methods, such as Gener-
ative Adversarial Networks (GANs) [1] and Diffusion-based
Models (DMs) [2], have attracted ever-increasing attention in
computer vision community and created numerous realistic-
looking synthetic images. However, utilizing these generated
content, especially fine-grained human facial images, results in
the severe risks about misuse and poses a significant challenge
for security in many fields. To address this issue, a variety of
detection methods have been proposed to distinguish whether
the facial image is authentic or synthetic.

For deepfake face detection, researchers commonly develop
a two-class (i.e., real or fake) detector via mining forgery
artifacts contained in the content. Early methods [3] [4]
[5] discover that synthetic cues are generated through an
upsampling operation, which is a crucial component of GANs
or DMs for achieving resolution expansion. However, these
specific artifacts are hard to be found with the advancement of
generative methods. Hence, data-driven training-based detec-
tion approaches are proposed to mine common forgery cues
across various generative models. These approaches can be
roughly categorized into two types, i.e., spatial-based detection
and frequency-based one. The former extracts local [6] [7] [8]
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Fig. 1. Existing perturbation-based training-free method, i.e., RIGID, tends to
identify high-resolution images as authentic and recognize low-resolution ones
as synthetic. Our approach significantly enhances both the robustness against
diverse input resolutions and the efficiency of detection process. It should
be noted that the results are reported on augmented unprocessed subset of
DeepFakeFaceForensics.

[9] [10] or global [11] [12] [13] spatial features for detection.
The latter mainly captures artifacts in frequency domain via
Fast Fourier Transform (FFT) [14] analysis. Obviously, local-
global spatial feature fusion [15] or spatial-frequency feature
fusion [16] can further improves detection performance by suf-
ficiently exploring complementary information. Recently, with
the development of vision-language models [17], researchers
[18] [19] have introduced them into the field of deepfake
image detection and achieved impressive performance. Unfor-
tunately, these training-based methods consume large amount
of computational resource, which are extremely unfavorable
for the large-scale training dataset. To alleviate this prob-
lem, AEROBLADE [20] conducts direct evaluation on testing
samples through computing the reconstruction error of a pre-
trained auto-encoder from DMs, opening up new avenues for
training-free deepfake image detection. Furthermore, RIGID
[21] utilizes perturbation-based method via measuring the
similarity between original inputs and perturbation-generated
version, achieving state-of-the-art detection performance.

As illustrated in Fig. 1, although perturbation-based
training-free methods like RIGID demonstrate promising re-
sults on detecting natural images, their effectiveness dimin-



ishes significantly when applied to deepfake facial image
detection, particularly for faces of varying resolutions. Specif-
ically, the images with higher resolution are prone to be
recognized as genuine. Besides, they usually need a large
amount of computational resources due to the complexity
of foundation models (e.g., DINOv2 [22]), which play a
role as feature extractor for subsequent similarity calcula-
tion. For example, RIGID averagely takes 268 millisecond
to process one image on augmented unprocessed subset of
DeepFakeFaceForensics [15], hindering the application in real-
world scenarios. Although DINOv2 needs a large amount of
computational resources, it performs much better than CLIP
[17] or other state-of-the-art architectures.

In this paper, we propose a simple yet effective perturbation-
based method to simultaneously circumvent these issues.
Concretely, we elaborate a novel strategy, i.e., Upsampling-
Perturbation-Downsampling (UPD), for training-free deepfake
face detection, remarkably improving both robustness and
efficiency. The main contributions of this work are as follows:

• To the best of our knowledge, it is the first work to
explore perturbation-based training-free method for deep-
fake face detection, opening up new avenues for this task;

• We devise a novel method, Upsampling-Perturbation-
Downsampling, to simultaneously enhance the robustness
against diverse resolutions and detection efficiency;

• Experimental results on challenging DeepFakeFaceForen-
sics dataset show that our method significantly outper-
forms state-of-the-art approaches.

II. RELATED WORK

A. Training-Based Deepfake Detection

Traditional deepfake detection methods commonly train
deep neural networks, such as Convolutional Neural Network
(CNN) [23] and Vision Transformer (ViT) [24], to extract
features for solving the binary (i.e., real or fake) classifica-
tion task. They can be roughly categorized into two groups
according the final features used for classification, i.e., spatial-
based and frequency-based methods. The former mine local
[6] [7] [8] [9] [10] or global [11] [12] [13] artifacts solely
for detection. Specifically, Chai et al. [6] utilize patch-based
classifier to mine the more easily detectable regions and
achieve good generalization ability. Similarly, researchers [7]
extract forgery cues from facial parts for detection. Multiple-
attention network [8] adopts spatial attention mechanism to
focus on different local parts. Patch-DFD [9] extracts five
key patches around face based on the prior knowledge. To
improve detection robustness, Mandelli et al. [10] adopt mul-
tiple orthogonal networks to calculate patch-level scores and
then aggregate them for final classification. Meanwhile, global
spatial features are also beneficial for detection. For example,
CNN-Aug [11] achieves impressive generalization ability via
extract global spatial features with the help of strong data
augmentation. Recently, researchers introduce vision-language
models into deepfake detection and show its advantage in
extracting global spatial features for detection. UnivFD [18]

TABLE I
THE COMPARISON BETWEEN ORIGINAL UNPROCESSED SUBSET AND

AUGMENTED VERSION OF DEEPFAKEFACEFORENSICS DATASET.

(Resolution, Label) Unprocessed Subset Augmented Version
(256*256, Real) - 3,160
(256*256, Fake) 3,160 3,160
(512*512, Real) - 1,000
(512*512, Fake) 1,000 1,000

(1024*1024, Real) 1,000 2,000
(1024*1024, Fake) 2,000 2,000

Total 7,160 12,320

utilizes fixed visual feature space of CLIP [17] to achieve
universal fake image detection. Complementary to spatial
features, frequency ones characterize forgery artifacts from
different aspect. Researchers [14] propose frequency-based
masking strategy and achieve slightly better results on univer-
sal fake image detection. Furthermore, conducting local-global
spatial feature fusion [15] or spatial-frequency feature fusion
[16] [19] significantly improves the detection performance.
However, all these methods need training or fine-tuning on
training samples, consuming much computational resources to
obtain satisfactory performance.

B. Training-Free Deepfake Detection

To alleviate the resource consumption, training-free deep-
fake detection methods emerge in recent years. UnivFD [18]
utilizes nearest neighbor to determine whether the testing
sample is authentic or synthetic. However, the training samples
with annotations are needed for conducting nearest neighbor
search. AEROBLADE [20] measures the similarity between
original input and the reconstructed one, which is computed
by a pre-trained auto-encoder of DMs. Obviously, AEROB-
LADE merely shows satisfactory detection performance on
images synthesized by DMs. Hence, RIGID [21] proposes a
perturbation-based method to measure the similarity between
original input and transformed version, with the help of
foundation models. It achieves impressive detection perfor-
mance on natural photos while performs poor on detecting
facial images. Besides, it still consumes much computational
resources due to the high complexity of foundation models.

III. METHODOLOGY

A. Motivation

Firstly, we show the resolution bias of existing perturbation-
based training-free methods, e.g., RIGID [21], through aug-
menting DeepFakeFaceForensics. Concretely, as demonstrated
in Table I, the original dataset merely consists of authentic im-
ages with high resolution, i.e., 1024*1024, ignoring the eval-
uation on lower ones, such as 512*512 and 256*256. When
simply conduct augmentation with downsampling operation,
existing method performs poor on these augmented images,
e.g., the Acc is only 0.144 on authentic samples of 256*256
resolution as illustrated in Fig. 1. This observation signifi-
cantly weakens the effectiveness of existing perturbation-based
training-free methods on deepfake face detection.
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Fig. 2. The overall framework, which consists of upsampling, perturbation and downsampling operations.

Secondly, we attempt to answer “Why existing perturbation-
based training-free methods fails to identify images of various
resolution?”. As is known to all, the core idea of perturbation-
based training-free methods is measuring the distance between
original input and perturbated one. This distance is not only
affected by the intensity of injected noise used for perturbation
but is also influenced by the smoothness of input content.
Obviously, the latter decreases with a decline in resolution,
making low-resolution samples more sensitive to be pertur-
bated and then resulting in poor detection performance.

B. Upsampling-Perturbation-Downsampling

Hence, we propose a simple yet effective Upsampling-
Perturbation-Downsampling (UPD) method to alleviate the
issue of bias, as illustrated in Fig. 2. For low-resolution
samples, we first conduct upsampling to obtain the version of
high resolution, avoiding the low smoothness of input content.
Formally, this process can be defined as follows:

xUp =

{
x, R(x) ≥ Rthr,

Up(x), R(x) < Rthr,
(1)

where xUp and Up denote the upsampled version of input
x and Upsampling function, respectively. R(x) means the
resolution of input x. Rthr represents the threshold to trigger
the upsampling operation.

Then we follow the traditional perturbation method [21],
i.e., injecting the noise drawn from a standard normal distri-
bution N(0, I), to obtain the perturbated samples. Specifically,
the perturbation can be describe as follows:

xUpPert = xUp + λ ∗ δ, δ ∼ N(0, I), (2)

where xUpPert is the perturbated version of upsampled input.
δ denotes additive noise and λ controls its intensity.

After obtaining upsampled and perturbated inputs, we con-
duct downsampling to reduce the burden of computation for
efficient detection, which can be formulated as follows:

xUpDown = Down(xUp), (3)

xUpPertDown = Down(xUpPert), (4)

where xUpDown and xUpPertDown represent the downsampled
version of upsampled and perturbated inputs. Down denotes
the downsampling operation.

C. Deepfake Detection

To measure the similarity between original input and trans-
formed one, we utilize DINOv2 as backbone to extract features
for subsequent similarity calculation. The decision of input
image can be defined as follows:

I(cos(F (xUpDown), F (xUpPertDown)) ≥ Sthr), (5)

where F stands for feature extractor(e.g., ViT-L/14 [22]), cos
represents the cosine similarity function, I denotes the binary
indicator, and Sthr is the threshold to identify whether the
input is authentic or synthetic.

IV. EXPERIMENT

A. Dataset and Experiment Setup

DeepFakeFaceForensics is a challenging dataset for deep-
fake face detction in real-world scenarios, which takes com-
mon post-processing (e.g., compression, blurring, adversarial
sample, manipulation, etc.) and advanced generative models
(e.g., GAN-based, DM-based, ViT-based, etc.) into consider-
ation. It comprises of 6 subsets, i.e., unprocessed, common



TABLE II
EVALUATION RESULTS (AUC) ON AUGMENTED DEEPFAKEFACEFORENSICS. NOTED THAT GLFF AND RIGID ARE REPRODUCED.

Methods Training Cost Unprocessed Post-processing Anti-forensics Multi-compression Mixed Average
Training-Based GLFF [15] ∼16 GPU Days 0.677 0.843 0.605 0.360 0.657 0.628

Training-Free RIGID [21] 0 GPU Days 0.625 0.661 0.447 0.542 0.463 0.547
UPD (Ours) 0 GPU Days 0.798 0.835 0.499 0.682 0.477 0.658

TABLE III
EVALUATION RESULTS (OA) ON AUGMENTED

DEEPFAKEFACEFORENSICS.

Test Data GLFF [15] RIGID [21] UPD (Ours)
Unprocessed 0.599 0.600 0.720

Post-processing 0.546 0.604 0.742
Anti-forensics 0.547 0.392 0.495

Multi-compression 0.491 0.542 0.629
Mixed 0.499 0.473 0.475

Average 0.536 0.522 0.612

post-processing, face blending, anti-forensics and multi-image
compression, with a total of 46,4000 synthetic images. For
evaluation, researchers [15] randomly select 1,000 authentic
images from FFHQ dataset [25].

Augmented DeepFakeFaceForensics is our re-constructed
dataset via augmentation on original authentic images (i.e.,
1024*1024 resolution) with downsampling, thus generating
low-resolution samples, such as 512*512 and 256*256. Be-
sides, we select more authentic images from FFHQ to make
the number of real and fake images be equal. However, for
face blending subset where the resolution of samples is usually
more than 2560*2560, the computational burden (i.e., minutes
per image) is unbearable for RIGID so that this subset is not
augmented. We believe this augmented and balanced dataset
can fairly evaluate the robustness of detection methods.

Evaluation Metrics includes Overall Accuracy (OA) and
Area Under ROC Curve (AUC). It should be noted that
accuracy and AUC are measured in each subset entirely,
instead of computing the average across all generative models
in each subset, like GLFF [15].

Following RIGID [21], we adopt ViT-L/14 [22] as feature
extractor and set threshold Sthr as 0.95. The noise intensity
λ is 0.08 and threshold Rthr is 1024. All experiments are
conducted with PyTorch [26] on single RTX 4090 GPU.

B. Comparison with SOTA Methods

As illustrated in Table II and Table III, we reproduce and
demonstrate detection results with 1 state-of-the-art training-
based method, i.e., GLFF [15] and 1 training-free one, i.e.,
RIGID [21]. Firstly, our proposed approach achieves the best
detection performance on both OA and AUC metrics, even
surpassing the training-based method. Secondly, we achieve
top 2 scores and 1 second-place score out of 5 subsets. For
anti-forensics and mixed subsets, GLFF obtains the highest
AUC and OA scores while RIGID and ours perform consis-
tently, indicating that training-free methods have limitations in
detecting these challenging deepfake facial images.
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Fig. 3. Detection performance with different value of each hyper-parameter.

C. Ablation Studies

We conduct detail experiments with different value of each
hyper-parameter and show the detection results (i.e., both AUC
and OA) in Fig. 3. Specifically, our approach is robust with the
change of noise intensity λ. However, the performance varies
greatly with changes in the value of threshold Sthr and Rthr.
To obtain better scores on both AUC and OA, we set the value
of noise intensity λ, threshold Sthr and Rthr as 0.08, 0.95 and
1024, respectively.

V. CONCLUSION

In this paper, we have proposed a novel perturbation-
based method, i.e., Upsampling-Perturbation-Downsampling,
for deepfake face detection. Our approach simultaneously
enhance the robustness and efficiency of training-free method.
In the future, we should devote more efforts on anti-forensics
and mixed subsets to improve the detection performance.
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